Étude de structures électroniques non-linéaires dans la magnétosphère et le vent-solaire : théorie et simulations - Département de physique Accéder directement au contenu
Thèse Année : 2023

Study of non-linear electronic structures in the magnetosphere and solar wind : theory and simulations

Étude de structures électroniques non-linéaires dans la magnétosphère et le vent-solaire : théorie et simulations

Gaëtan Gauthier

Résumé

In the course of this thesis, we carried out a study in two distinct parts, with one thing in common : beam-plasma (bump-on-tail) instability. Firstly, we studied electromagnetic wave emissions at the plasma frequency and its first harmonic in the heliospheric context. Our study was essentially numerical, based on massively-parallel 2D3V Particle-In-Cell (PIC) simulations (Smilei) generating electrostatic and then electromagnetic waves by relaxation of an electron beam at the origin of type III radio bursts propagating in the solar wind plasma. By generalizing previous studies, the physical and numerical characteristics of our simulations have enabled us to study the principal modes of the waves associated with these emissions generated by non-linear coupling. Through a choice of parameters, we showed that the numerical noise (inherent in PIC codes) could be reduced sufficiently to allow us to model the density fluctuations observed in the solar wind. This is a prerequisite for showing that these fluctuations, although very small, can modify the emission characteristics. We then turned our attention to the non-linear kinetic structures known as electron holes in phase space (or EH for short) observed in many regions of the magnetosphere. Our study has been carried out using two approaches : (i) A theoretical study based on the BGK (Bernstein-Greene-Kruskal) integral method to determine the distributions of particles (electrons and ions) associated with these EHs, as well as their conditions of existence. We have thus developed a 3D model of revolution symmetry around the ambient magnetic field, which takes into account both electron polarization drift and a more realistic des- cription of plasma boundary conditions with the introduction of the EH’s velocity relative to the ambient plasma. This model has enabled us to characterize the relationship between parallel and perpendicular scales of EHs in different regions of the magnetosphere, as well as some restrictions on their conditions of existence. (ii) The second approach is a numerical PIC study, which allows us to generate these EHs with realistic initial conditions and to compare them with in situ spatial observations. Thanks to a pa- rametric study, we have shown that environmental conditions (ambient magnetic field, beam density) have an impact on their generation and nature (quasi-electrostatic or with an internal magnetic field component). This qualitative and quantitative numerical study has made it possible to specify certain parameters, such as beam density, which is still not easily accessible to space mission measurements, as well as other fundamental characteristics of EHs, such as their propagation speed or even the conservation and conversion of energy within them.
Au cours de cette thèse, nous avons fait une étude en deux parties distinctes avec un point commun : l’instabilité de faisceau-plasma (ou « bump-on-tail » en anglais). Dans un premier temps, nous avons étudié les émissions d’ondes électromagnétiques à la fréquence plasma et sa première harmonique dans le contexte héliosphérique. Notre étude a été essentiellement numérique et basée sur des simulations (Smilei) massivement parallèles « Particle-In-Cell » (PIC) 2D3V générant des ondes électrostatiques puis électromagnétiques par relaxation d’un faisceau d’électrons à l’origine des sursauts radio de type III qui se propagent dans le plasma du vent solaire. En généralisant les études précédentes, les caractéristiques physiques et numériques de nos simulations nous ont permis d’étudier les modes principaux des ondes associées à ces émissions générées par un couplage non-linéaire. Par un choix de paramètres, nous avons montré que le bruit numérique (inhérent aux codes PIC) pouvait être suffisamment réduit pour nous permettre de modéliser les fluctuations de densité observées dans le vent solaire. Ce qui est une condition permettant de montrer que ces fluctuations, bien que très faibles, peuvent modifier les caractéristiques des émissions. Dans un second temps, nous nous sommes intéressés à des structures cinétiques non-linéaires appelées « trou d’électron dans l’espace des phases » (ou EH en abrégé) observées dans de nombreuses régions de la magnétosphère. Notre étude a été menée suivant deux approches : (i) Une étude théorique basée sur la méthode intégrale BGK (pour Bernstein-Greene-Kruskal) permettant de déterminer les distributions des particules (électrons et ions) associées à ces EHs, ainsi que leurs conditions d’existence. Nous avons ainsi développé un modèle 3D de symétrie de révolution autour du champ magnétique ambiant, qui tient compte à la fois de la dérive de polarisation des électrons et d’une description plus réaliste des conditions aux limites du plasma avec l’introduction de la vitesse de l’EH par rapport au plasma ambiant. Ce modèle nous a permis de caractériser le rapport entre échelles parallèle et perpendiculaire des EHs dans les différentes régions de la magnétosphère ainsi que certaines restrictions sur leurs conditions d’existence. (ii) La seconde approche est une étude numérique PIC permettant de générer ces EHs avec des conditions initiales réalistes et de les comparer aux observations spatiales in situ. Grâce à une étude paramétrique, nous avons montré que les conditions du milieu (champ magnétique ambiant, densité du faisceau) impactent leur génération et leur nature (quasi-électrostatique ou avec une composante de champ magnétique interne). Cette étude numérique qualitative et quantitative a notamment permis de préciser certains paramètres comme la densité du faisceau encore difficilement accessible aux mesures des missions spatiales, ainsi que d’autres caractéristiques fondamentales des EHs telles que leur vitesse de propagation ou encore la conservation et la conversion d’énergie en leur sein.
Fichier principal
Vignette du fichier
157602_GAUTHIER_2023_archivage.pdf (37.35 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04538305 , version 1 (09-04-2024)

Identifiants

  • HAL Id : tel-04538305 , version 1

Citer

Gaëtan Gauthier. Étude de structures électroniques non-linéaires dans la magnétosphère et le vent-solaire : théorie et simulations. Physique des plasmas [physics.plasm-ph]. Sorbonne Université, 2023. Français. ⟨NNT : 2023SORUS676⟩. ⟨tel-04538305⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More