J. Ramier, Comportement mécanique d'élastomères chargés, influence de l'adhésion charge -polymère, influence de la morphologie, 2004.

Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon nanotubes-polymer composites : chemisty, processing, mechanical and electrical properties, Progress in Polymer Science, vol.35, pp.357-401, 2010.

J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, vol.52, pp.5-25, 2011.

M. Carrega, Matériaux Industriels : matériaux polymères, 2000.

M. Hassar, Influence des nano-charges de noir de carbone sur le comportement mécanique de matériaux composites : application au blindage électromagnétique. Other, 2013.

, Florent Dalmas. Composites à matrice polymère et nano-renforts flexibles : propriétés mécaniques et électriques. Mechanics. Institut National Polytechnique de Grenoble -INPG, 2005.

G. Mittal, V. Dhand, K. Y. Rhee, S. Park, and W. R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, Journal of Industrial and Engineering Chemistry, vol.21, pp.11-25, 2015.

R. M. Mutiso and K. I. Winey, Electrical properties of polymer nanocomposites containing rodlike nanofillers, Progress in Polymer Science, vol.40, pp.63-84, 2015.

D. Toker, D. Azulay, N. Shimoni, I. Balberg, and O. Millo, Tunneling and percolation in Metal-Insulator Composite Materials, The Racah Institute of Physics, 2003.

I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Physical Review B, vol.30, issue.7, pp.3933-3943, 1984.

M. H. Al-saleh and U. Sundarajah, Review of the mechanical properties of carbon nanofiber/polymer composites, Composites: Part A, vol.42, pp.2126-2142, 2011.

J. Dupuy, Identification des propriétés mécaniques de matériaux composites par analyse vibratoire

J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang et al., Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Advanced Functional Materials, vol.17, pp.3207-3215, 2007.

A. V. Kyrylyuk and P. Van-der-schoot, Continuum percolation of carbon nanotubes in polymeric and colloidal media, Proceedings of the National Academy of Science of the United States of America 105, pp.8221-8226, 2008.

J. N. Coleman, U. Khan, and Y. K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, vol.18, issue.6, pp.689-706, 2006.

X. Zeng, X. Xu, P. M. Shenai, E. Kovalev, C. Baudot et al., Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites, The Journal of Physical Chemistry, vol.115, pp.21685-21690, 2011.

F. Dalmas, R. Dendievel, L. Chazeau, J. Cavaille, and C. Gauthier, Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks, Acta Materialia, vol.54, pp.2923-2931, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436177

C. Li, E. Thostenson, and T. Chou, Effect of nanotube waviness on the elec-trical conductivity of carbon nanotube-based composites, Composites Science and Technology, vol.68, pp.1445-1452, 2008.

J. J. Bikerman, The science adhesive joints, 1968.

J. Goodier, Concentration of stress around spherical and cylindrical inclusions and flaws, Journal of Applied Mechanics, vol.1, pp.39-44, 1933.

M. Gigliotti, J. Grandinier, and M. C. Lafarie-frenot, Vieillissement des composites à matrice organique -Outils de modélisation, Techniques de l'Ingénieur, Caractérisation et propriétés d'usage des composites, 2013.

Y. Shindo, Y. Kuronuma, T. Takeda, F. Narita, and S. Fu, Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading, Composites : Part B, vol.43, pp.39-43, 2012.

O. Starkova, E. Mannov, K. Schulte, and A. Aniskevich, Strain-dependent electrical response of epoxy/MWCNT composite after hydrothermal aging, Composites Science and Technology, vol.11, pp.107-113, 2015.

S. Gong and Z. H. Zhu, On the mechanism of piezoresistivity of carbon nanotube polymer composites, Polymer, vol.55, pp.4136-4149, 2014.

S. Kirkpatrick, Percolation and conduction, Reviews of Modern Physics, vol.45, issue.4, pp.574-588, 1973.

L. Liu and D. Zhang, The sensitive electrical response of reduced graphene oxide-polymer nanocomposites to large deformation, Composites: Part A, vol.75, pp.46-53, 2015.

W. S. Bao, S. A. Meguid, Z. H. Zhu, and M. J. Meguid, Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes, Nanotechnology, vol.22, issue.8, p.2011

J. G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, Journal of Applied Physics, vol.34, pp.1793-1803, 1963.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A241, pp.376-396, 1957.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, pp.571-574, 1973.

Y. B. Lu and Q. M. Li, Dynamic behaviour of polymers at high strain-rates based on split Hopkinson pressure bar tests, International Journal of Impact Engineering, vol.38, issue.1, pp.41-50, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00747798

M. A. Matos, V. L. Tagarielli, and S. T. Pinho, Simulation of the electromechanical properties of carbon nanotube polymer nanocomposites for strain sensing, 2016.

T. Tallman and K. W. Wang, An arbitrary strains carbon nanotube composite piezoresistivity model for finite element integration, Applied Physics Letters, vol.102, issue.4, p.2013

N. Heeder, I. Chakraborty, A. Bose, and A. Shukla, Electro-mechanical behavior of graphenepolystyrene composites under dynamic loading, Journal of dynamic behavior materials, vol.1

J. R. Potts, D. R. Dreyer, C. R. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, vol.52, pp.5-25, 2011.

Y. De and Z. , Caoutchouc : méthodes d'obtention et propriétés, Techniques de l'ingénieur, Plastiques et Composites, 2015.

N. Larouche, Étude de la synthèse et de la fonctionnalisation à l'azote du noir de carbone assistée par plasma pour des applications dans le domaine des piles à combustible, vol.239, 2010.

K. S. Kim, A. Moradian, J. Mostaghimi, Y. Alinejad, A. Shahverdi et al., Synthesis of single-walled carbon nanotubes by induction thermal plasma, Nano Research, vol.2, pp.800-817, 2009.

Y. Y. Huang and E. M. Teretjev, Dispersion of carbon nanotubes: mixing, sonication, stabilization and composite properties, Polymers, vol.4, pp.275-295, 2012.

M. Taya, W. J. Kim, and K. Ono, Piezoresistivity of a short fiber/elastomer matrix composite, Mechanics of Materials, vol.28, pp.53-59, 1998.

N. C. Das, T. K. Chaki, and D. Khastgir, Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites, Polymer International, vol.51, pp.156-163, 2002.

L. Bokobza, Multiwall carbon nanotube-filled natural rubber: Electrical and mechanical properties, eXPRESS Polymer Letters, vol.6, issue.3, pp.213-223, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01576524

J. Krajci, Z. Spitalsky, and I. Chodak, Relationship between conductivity and stress-strain curve of electroconductive composite with SBR or polyprolactone matrices, European Polymer Journal, vol.55, pp.135-143, 2014.

J. N. Aneli, G. E. Zaikov, and L. M. Khananashvili, Effects of mechanical deformations on the structurization and electric conductivity of electric conducting polymer composites, Journal of Applied Polymer Sciences, vol.74, pp.601-621, 1999.

K. Yamaguchi, J. J. Busfield, and A. G. Thomas, Electrical and mechanical behavior of filled elastomers. I. The effect of strain, Journal of Polymer Science Part B: Polymer Physics, vol.41, pp.2079-2089, 2003.

L. Flandin, A. Chang, S. Nazarenko, A. Hiltner, and E. Baer, Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers, Journal of Applied Polymer Science, vol.76, pp.894-905, 2000.

M. H. El-eraki, A. M. El-lawindy, H. H. Hassan, and W. E. Mahmoud, The physical properties of pressure sensitive rubber composites, Polymer Degradation and Stability, vol.91, pp.1417-1423, 2006.

L. Gao, T. Chou, E. T. Thostenson, Z. Zhang, and M. Coulaud, In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks, Carbon, vol.49, pp.3371-3391, 2011.

C. Li and T. Chou, Modelling of damage sensing in fiber composites using carbon nanotube networks, Composites Science Technology, vol.68, pp.3373-3379, 2008.

A. Baltopoulos, N. Polydorides, L. Pambaguian, A. Vavouliotis, and V. Kostopoulos, Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites, Composites Part B: Engineering, vol.76, pp.149-158, 2015.

B. R. Loyola, In situ sensing in glass fiber-reinforced polymer composites via embedded carbon nanotube thin films, Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, pp.327-352, 2016.

N. Heeder, A. Shukla, and V. Chalivendra, Sensitivity and dynamic electrical response of CNTreinforced nanocomposites, Journal of Material Science, vol.47, pp.3808-3816, 2012.

T. Selvan, N. Eshwaran, S. B. Das, A. Stöckelhuber, K. W. Wiessner et al., Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications, Sensors and Actuators A, vol.239, pp.102-113, 2016.

A. Manta and K. I. Tserpes, Numerical computation of electrical conductivity of carbon nanotube-filled polymers, Composites Part B 1010, pp.240-246, 2016.

P. Ciselli, L. Lu, J. J. Busfield, and T. Peijs, Piezoresistive polymer composites based on EPDM and MWNTs for strain sensing applications, vol.14, pp.1-13, 2010.

D. C. Edwards, Review Polymer-filler interactions in rubber reinforcement, Journal of Materials Science, vol.25, pp.4175-4185, 1990.

P. Costa, A. Ferreira, V. Sencadas, J. C. Viana, and S. Lanceros-mendez, Electro-mechanical properties of triblock copolymer styrene-butadiene-styrene/carbon nanotube composites for large deformation sensor applications, Sensors and Actuators A, vol.201, pp.458-467, 2013.

B. Hao, L. Mu, Q. Ma, S. Yang, and P. Ma, Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks, Composites Science and Technology, vol.163, pp.163-170, 2018.

J. J. Ku-herrera and F. Aviles, Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic region, Carbon, vol.50, pp.2592-2598, 2012.

G. Spinelli, P. Lamberti, V. Tucci, L. Vertuccio, and L. Guadagno, Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring, Composites Part B, vol.145, pp.90-99, 2018.

Y. Wang, S. Wang, M. Li, Y. Gu, and Z. Zhang, Piezoresistive response of carbon nanotube composite film under laterally compressive strain, Sensors and Actuators A, vol.273, pp.140-146, 2018.

T. Ding, L. Wang, and P. Wang, Changes in Electrical Resistance of Carbon-Black-Filled Silicone Rubber Composite During Compression, Journal of Polymer Science: Part B: Polymer Physics, vol.45, pp.2700-2706, 2007.

L. Wang, T. Ding, and P. Wang, Effects of Compression Cycles and Precompression Pressure on the Repeatability of Piezoresistivity for Carbon Black-Filled Silicone Rubber Composite, Journal of Polymer Science: Part B: Polymer Physics, vol.46, pp.1050-1061, 2008.

T. Zhai, D. Li, G. Fei, and H. Xia, Piezoresistive and compression resistance relaxation behaviour of water blown carbon nanotube/polyurethane composite foam, Composites: Part A, vol.72, pp.108-114, 2015.

H. Souri, I. W. Nam, and H. K. Lee, Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials, Composites Science and Technology, vol.121, pp.41-48, 2015.

L. Wang and Y. Han, Application of carbon nanotube filled silicone rubber composite in stress measurement during ramped loading with low compression speed, Sensors and Actuators A, vol.201, pp.214-221, 2013.

C. Li, H. Deng, K. Wang, Q. Zhang, F. Chen et al., Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes, Journal of Applied Polymer Science, vol.121, pp.2104-2112, 2011.

J. Park, Y. Lee, J. Hong, M. Ha, Y. Jung et al., Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for

, Ultrasensitive and Multimodal Electronic Skins, vol.8, p.4689

A. Ali, M. Hosseini, and B. B. Sahari, A review of Constitutive Models for Rubber-Like Materials, American Journal of Engineering and Applied Sciences, vol.3, pp.232-239, 2010.

G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi, Constitutive modelling of nanotube-reinforced polymer composites, Composites Science and Technology, vol.63, pp.1671-1687, 2003.

C. Li and T. Chou, Multiscale modeling of compressive behaviour of carbon nanotube/polymer composites, Composites Science and Technology, vol.66, pp.2409-2414, 2006.

R. C. Batra and A. Sears, Continuum models of multi-walled carbon nanotubes, International Journal of Solids and Structures, vol.44, pp.7577-7596, 2007.

D. Seidel and G. , Micromechanics modelling of the multifunctional nature of carbon nanotube -polymer nanocomposites, 2007.

D. Shi, X. Feng, H. Jiang, Y. Y. Huang, and K. Hwang, Multiscale analysis of fracture of carbon nanotubes embedded in composites, International Journal of Fracture, vol.134, pp.369-386, 2005.

C. Hsueh and I. N. Ivanov, Reorientation of carbon nanotubes in polymer matrix composites using compressive loading, Journal of Material Research, vol.20, issue.4, pp.1026-1032

T. Tang and S. D. Felicelli, Micromechanical models for time-dependent multiphysics responses of polymer matrix smart composites, International Journal of Engineering Science, vol.94, pp.164-180, 2015.

F. Du, J. E. Fischer, and K. I. Winey, Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Physical Review B, vol.72, issue.4, p.2005

S. R. Broadbent and J. M. Hammersley, Percolation processes I. Crystals and Mazes, Proceeding of the Cambridge Philosophical Society, vol.53, pp.629-641, 1957.

J. Majesté, , 2017.

H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu et al., Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications, Journal of Materials Chemistry C, issue.4, pp.157-166, 2016.

W. Fang, H. W. Jang, and S. N. Leung, Evaluation and modeling of electrically conductive polymer nanocomposites with carbon nanotube networks, Composites Part B, vol.83, pp.184-193, 2015.

D. J. Benson, S. Kolling, D. Bois, and P. A. , A simplified approach for strain-rate dependent hyperelastic materials with damage, 9th International LS-Dyna Users Conference, pp.15-42, 2006.

G. Gary and H. Zhao, Dépouillement de l'essai aux barres de Hopkinson par une technique de calcul inverse, Journal de Physique IV, issue.C8, pp.8-89, 1994.


B. Hu, H. Hu, Y. Li, K. Akagi, W. Yuan et al., Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites, Nanoscale Research Letters, vol.7, pp.1-11, 2012.

G. Dhatt and G. Touzot, Une présentation de la méthode des éléments finis

J. Zha, W. Li, J. Zhang, C. Shi, and Z. Dang, Influence of the second filler on the positive piezoresistance behavior of carbon nanotubes/silicone rubber composites, Materials Letters, vol.118, pp.161-164, 2014.

D. Banerjee, T. Nguyen, and T. Chuang, Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase's modulus and thickness: A finite element analysis study, Computational Materials Science, vol.114, pp.209-218, 2016.

N. Tasneem, Study of wave shaping techniques of Split Hopkinson Pressure Bars using Finite Element Analysis, Mechanical Engineering, 2005.

R. Zhang, H. Deng, R. Valenca, J. Jin, Q. Fu et al., Strain sensing behavior of elastomeric composite film containing carbon nanotubes under cyclic loading, Composite Science and Technology, vol.74, pp.1-5, 2013.

C. Lozano-pérez, J. V. Cauich-rodriguez, and F. Avilés, Influence of rigid segment and carbon nanotube concentration on the cyclic and hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites, Composite Science and Technology, vol.128, pp.25-32, 2016.

. Ls-dyna, User Manual and Theoretical Manual

L. Wang and L. Cheng, Piezoresistive effect of a carbon nanotube silicone-matrix composite, Carbon, vol.71, pp.319-331, 2014.