K. H. Schoenbach and K. Becker, « 20 years of microplasma research: a status report, vol.70, 2016.

I. Adamovich, The 2017 Plasma Roadmap: Low temperature plasma science and technology, vol.50, p.323001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01895583

J. W. Frame, D. J. Wheeler, T. A. Detemple, and J. G. Eden, « Microdischarge devices fabricated in silicon, Applied Physics Letters, vol.71, issue.9, p.1165, 1997.

P. J. Lindner, E. Bender, and R. S. Besser, « Failure analysis of novel microhollow cathode discharge microplasma reactors, International Journal of Hydrogen Energy, vol.39, pp.18084-18091, 2014.

V. Felix, « Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices, Plasma Sources Science and Technology, vol.25, issue.2, p.25021, 2016.

C. H. Sillerud, « Microdischarges utilized in portable gas sensing and their atmospheric contaminantes, 2017.

T. Dufour, Etude expérimentale et simulation des micro-plasmas générés dans des microcathodes creuses, 2009.

M. K. Kulsreshath, « Study of dc micro-discharge arrays made in silicon using CMOS compatible technology, Journal of Physics D: Applied Physics, vol.45, p.285202, 2012.

L. Schwaederlé, M. K. Kulsreshath, L. J. Overzet, P. Lefaucheux, T. Tillocher et al., « Breakdown study of dc silicon micro-discharge devices, Journal of Physics D: Applied Physics, vol.45, issue.6, p.65201, 2012.

M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, 2005.

Y. Fu and J. P. Verboncoeur, On the Similarities of Low-Temperature Plasma Discharges », IEEE Transactions on Plasma Science, pp.1-10, 2018.

A. M. Loveless and A. L. Garner, Generalization of Microdischarge Scaling Laws for All Gases at Atmospheric Pressure », IEEE Transactions on Plasma Science, vol.45, pp.574-583, 2017.

T. Zhang, F. He, B. Li, Y. Zhang, R. Wang et al., « Transition of predominant mechanism for the deviation of micro-gap dc gas breakdown character with electrode gap changing, AIP Advances, vol.9, issue.2, p.25006, 2019.

D. B. Go and A. Venkattraman, « Microscale gas breakdown: ion-enhanced field emission and the modified Paschen's curve », J. Phys. D: Appl. Phys, vol.47, p.503001, 2014.

R. Foest, M. Schmidt, K. Becker, and . Microplasmas, an emerging field of low-temperature plasma science and technology, International Journal of Mass Spectrometry, vol.248, issue.3, pp.87-102, 2006.

K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, Microhollow cathode discharges, vol.68, pp.13-15, 1996.

Y. Fu, P. Zhang, and J. P. Verboncoeur, « Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode, Applied Physics Letters, vol.112, p.254102, 2018.

Y. Fu, P. Zhang, and J. P. Verboncoeur, « Paschen's curve in microgaps with an electrode surface protrusion, Applied Physics Letters, vol.113, issue.5, p.54102, 2018.

Y. Fu, J. Krek, P. Zhang, and J. P. Verboncoeur, Gas Breakdown in Microgaps With a Surface Protrusion on the Electrode », IEEE Transactions on Plasma Science, pp.1-9, 2018.

Y. Fu, P. Zhang, J. Krek, and J. P. Verboncoeur, « Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions, Applied Physics Letters, vol.114, issue.1, p.14102, 2019.

J. Torres and R. S. , « Electric field breakdown at micrometre separations in air and vacuum, Microsystem Technologies, vol.6, pp.6-10, 1999.

A. Venkattraman, « Electric field enhancement due to a saw-tooth asperity in a channel and implications on microscale gas breakdown, J. Phys. D: Appl. Phys, vol.47, p.425205, 2014.

J. T. Gudmundsson and A. Hecimovic, Foundations of DC plasma sources », Plasma Sources Science and Technology, 2017.

F. Iza, Microplasmas: Sources, Particle Kinetics, and Biomedical Applications », Plasma Processes Polym, vol.5, pp.322-344, 2008.

R. Wang, Q. Ji, T. Zhang, Q. Xia, Y. Zhang et al., « Discharge characteristics of a needleto-plate electrode at a micro-scale gap, Plasma Science and Technology, vol.20, issue.5, p.54017, 2018.

A. Astafiev, A. Kudryavtsev, O. Stepanova, V. Belyaev, R. Zamchy et al., « DC glow microdischarge with a self-determined length in helium and argon at atmospheric pressure », Journal of Applied Physics, vol.123, issue.8, p.83304, 2018.

K. Matra, H. Furuta, A. Hatta, and «. Dc-microplasma, SEM Chamber », Micromachines, vol.8, p.211, 2017.

T. Yokoyama, S. Hamada, S. Ibuka, K. Yasuoka, and E. S. Ishii, Atmospheric dc discharges with miniature gas flow as microplasma generation method, Journal of Physics D: Applied Physics, vol.38, issue.11, pp.1684-1689, 2005.

T. Dufour, « Effect of limiting the cathode surface on direct current microhollow cathode discharge in helium, Applied Physics Letters, vol.93, issue.7, p.71508, 2008.

T. Dufour, « Experimental study and simulation of a micro-discharge with limited cathode area, The European Physical Journal D, vol.60, issue.3, pp.565-574

C. Zhang, K. Liu, and J. Qiu, « Array Microhollow Cathode (MHC) Discharges With Pretrigger Device Triggered by Nanosecond Pulses at Atmospheric Pressure », IEEE Transactions on Plasma Science, pp.1-10, 2016.

T. Ma, H. Wang, Q. Shi, S. Li, and A. , Tony) B. Murphy, « Breakdown and current-voltage characteristics of DC micro-slit discharges in carbon dioxide, Plasma Sources Science and Technology, 2018.

H. Qiu, K. Martus, W. Y. Lee, and K. Becker, « Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures, International Journal of Mass Spectrometry, vol.233, pp.19-24, 2004.

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions, International Journal of Mass Spectrometry, vol.205, issue.1, pp.277-283, 2001.

T. Wang, M. S. Hu, B. Yang, X. L. Wang, and J. Liu, « A simple and flexible atmospheric microplasma generation device with patternable microfluidic channels, Micro Electro Mechanical Systems (MEMS), pp.1197-1200, 2018.

S. Kasri, « Experimental characterization of a ns-pulsed micro-hollow cathode discharge (MHCD) array in a N 2 /Ar mixture, Plasma Sources Science and Technology, vol.28, issue.3, p.35003, 2019.

C. L. , -. Park, J. Chen, and J. G. Eden, « Silicon microdischarge devices having inverted pyramidal cathodes: fabrication and performance of arrays, Applied Physics Letters, vol.78, issue.4, 2001.

S. J. Park, J. Chen, C. Liu, and J. G. Eden, « Arrays of microdischarge devices having 50-100?mm square pyramidal Si anodes and screen cathodes, Electronics Letters, vol.37, issue.3, p.1, 2001.

C. J. , -. Park, and J. G. Eden, « Performance of microdischarge devices and arrays with screen electrodes, Photonics Technology Letters, vol.13, issue.1, 2001.

C. H. Sillerud, « Characterization of chemical contaminants and their spectral properties from an atmospheric pressure ns-pulsed microdischarge in neon, Physics of Plasmas, vol.24, issue.3, p.33502, 2017.

S. Iseni, R. Michaud, P. Lefaucheux, G. B. Sretenovi?, V. Schulz-von-der-gathen et al., On the validity of neutral gas temperature by emission spectroscopy in micro-discharges close to atmospheric pressure, Plasma Sources Sci. Technol, vol.28, issue.6, p.65003, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02117169

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review, vol.23, p.23001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006011

T. D. Nguyen and N. Sadeghi, Rotational and vibrational distributions of N2(C 3?u) excited by state-selected Ar(3P2) and Ar(3P0) metastable atoms, Chemical Physics, vol.79, issue.1, pp.41-55, 1983.

Q. Wang, F. Doll, V. M. Donnelly, D. J. Economou, N. Sadeghi et al., Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma », Journal of Physics D: Applied Physics, vol.40, pp.4202-4211, 2007.

S. Djurovi? and N. Konjevi?, « On the use of non-hydrogenic spectral lines for low electron density and high pressure plasma diagnostics, Plasma Sources Science and Technology, vol.18, issue.3, p.35011, 2009.

A. V. Pipa, Y. Z. Ionikh, V. M. Chekishev, M. Dünnbier, and E. S. Reuter, « Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon ?APPJ), Applied Physics Letters, vol.106, p.244104, 2015.

J. P. Boeuf and L. C. Pitchford, Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor, vol.51, p.1376, 1995.

G. J. Hagelaar and L. C. Pitchford, « Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol, vol.14, issue.4, pp.722-733, 2005.

R. Michaud, « Direct current microhollow cathode discharges on silicon devices operating in argon and helium, Plasma Sources Sci. Technol, vol.27, issue.2, p.25005, 2018.

D. Staack, B. Farouk, A. Gutsol, and A. Fridman, « DC normal glow discharges in atmospheric pressure atomic and molecular gases, Plasma Sources Sci. Technol, vol.17, issue.2, p.25013, 2008.

A. Mahfouf, « Calcul des coefficients de transport dans des plasmas hors de l'équilibre, p.197

N. Laegreid and G. K. Wehner, « Sputtering Yields of Metals for Ar + and Ne + Ions with Energies from 50 to 600 ev, Journal of Applied Physics, vol.32, issue.3, pp.365-369, 1961.

X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech et al., « Analysis of the selfpulsing operating mode of a microdischarge, Plasma Sources Science and Technology, vol.16, issue.1, pp.23-32, 2007.

R. Mahamud and T. I. Farouk, « Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressure », Journal of Physics D: Applied Physics, vol.49, p.145202, 2016.

D. R. Bates, K. L. Bell, and A. E. Kingston, Excited atoms in decaying optically thick plasmas, Proc. Phys. Soc, vol.91, issue.2, pp.288-299, 1967.

K. L. Bell, A. Dalgarno, and A. E. Kingston, « Penning ionization by metastable helium atoms, J. Phys. B: At. Mol. Phys, vol.1, issue.1, pp.18-22, 1968.

F. Tuffin, G. L. Coz, and J. Peresse, « Penning ionization of argon by metastable helium atoms : a study of the energy and angular distributions of the ejected electrons, J. Phyique Lett, vol.40, issue.13, pp.271-275, 1979.

F. Nascimento, S. Moshkalev, and M. Machida, The role of vibrational temperature variations in a pulsed dielectric barrier discharge plasma device, 2018.

B. N. Sismanoglu, K. G. Grigorov, R. Caetano, M. V. Rezende, and Y. D. Hoyer, « Spectroscopic measurements and electrical diagnostics of microhollow cathode discharges in argon flow at atmospheric pressure », Eur. Phys. J. D, vol.60, issue.3, pp.505-516

S. G. Belostotskiy, T. Ouk, V. M. Donnelly, D. J. Economou, and N. Sadeghi, « Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy », Journal of Applied Physics, vol.107, issue.5, p.53305, 2010.

W. M. Haynes, D. R. Lide, and T. Bruno, CRC handbook of chemistry and physics: a readyreference book of chemical and physical data, 2016.

. B. Ya, G. G. Magomedov, and . Gadjiev, « High-temperature thermal conductivity of silicon in the solid and liquid states, High Temp, vol.46, issue.3, pp.422-424, 2008.

J. Jonkers, M. Van-de-sande, A. Sola, A. Gamero, and J. Van-der-mullen, On the differences between ionizing helium and argon plasmas at atmospheric pressure, vol.12, pp.30-38, 2003.

M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, R. F. Hicks et al., « Physics of highpressure helium and argon radio-frequency plasmas, Journal of Applied Physics, vol.96, pp.7011-7017, 2004.

R. H. Stark and K. H. Schoenbach, « Direct current glow discharges in atmospheric air, Applied Physics Letters, vol.74, pp.3770-3772, 1999.

K. Makasheva, E. M. Serrano, G. Hagelaar, J. Boeuf, and L. C. Pitchford, A better understanding of microcathode sustained discharges, vol.49, pp.233-238, 2007.

J. S. Sousa and V. Puech, « Pressure Effects in the Spatial Development of Microcathode Sustained Discharges in Rare-Gas Oxygen Mixtures, IEEE Trans. Plasma Sci, vol.39, issue.11, pp.2680-2681, 2011.

. Th, X. Callegari, A. Aubert, J. P. Rousseau, L. C. Boeuf et al., « Microhollow cathode sustained discharges: comparative studies in micro-and equivalent macro-cell geometries, Eur. Phys. J. D, vol.60, issue.3, pp.581-587

S. He, P. Wang, J. Ha, B. Zhang, Z. Zhang et al., Effects of discharge parameters on the micro-hollow cathode sustained glow discharge, Plasma Science and Technology, vol.20, issue.5, p.54006, 2018.

R. K. Das and J. Shin, « Simultaneous simulation of microhollow cathode discharge and its sustained discharge with split third electrodes, Physics of Plasmas, vol.23, issue.11, p.113506, 2016.

R. K. Das, B. Das, and S. R. Iftekher, « A simulation studies of direct current microhollow cathode sustained discharge and comparison with experimental investigation, Strategic Technology (IFOST), pp.507-510, 2014.

A. Barkhordari, A. Ganjovi, I. Mirzaei, and A. Falahat, « Study of the physical discharge properties of a Ar/O2 DC plasma jet, Indian Journal of Physics, 2018.

X. Pei, J. Kredl, X. Lu, and J. F. Kolb, « Discharge modes of atmospheric pressure DC plasma jets operated with air or nitrogen, Journal of Physics D: Applied Physics, vol.51, p.384001, 2018.

R. Dussart, , 2008.

T. Tillocher, « Optimization of submicron deep trench profiles with the STiGer cryoetching process: reduction of defects, J. Micromech. Microeng, vol.21, issue.8, p.85005, 2011.