. .. Conclusions,

O. Low and . .. Operation, 3.1. Maximization of the ozone effect through adaptation of the fuel injection strategy
URL : https://hal.archives-ouvertes.fr/hal-00144474

.. .. Conclusions,

E. Nederhoff, Transport energy co2 -Moving Toward Sustainability, 2009.

A. Sieminski, International Energy Outlook, US Energy Inf Adm, 2014.

, International Energy Agency n

, World Population Prospects: The 2017 Revision, Key Findings and Advance Tables, p.46, 2017.

U. S. , Energy Information Administration, Transportation Sector Energy Consumption, vol.2016, pp.127-164, 2016.

, International Energy Agencey (IEA). CO2 Emissions From Fuel Combustion, 2016.

J. D. Miller and C. Façanha, The state of clean transport policy -A 2014 synthesis of vehicle and fuel policy developments, ICCT Rep, p.73, 2014.

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, and S. K. Allen, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergov Panel Clim Chang Work Gr I Contrib to IPCC Fifth Assess Rep (AR5), p.1535, 2013.

F. Berni, S. Breda, D. 'adamo, A. Fontanesi, S. Cantore et al., Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine, 2015.

J. Kim, H. Park, C. Bae, M. Choi, and Y. Kwak, Effects of water direct injection on the torque enhancement and fuel consumption reduction of a gasoline engine under high-load conditions, Int J Engine Res, vol.17, pp.795-808, 2016.

J. Hwang, C. Bae, J. Park, W. Choe, J. Cha et al., Microwave-assisted plasma ignition in a constant volume combustion chamber, Combust Flame, vol.167, pp.86-96, 2016.

J. E. Dec, Advanced compression-ignition engines -Understanding the in-cylinder processes, Proc Combust Inst, vol.32, pp.2727-2769, 2009.

S. Saxena and I. D. Bedoya, Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits, Prog Energy Combust Sci, vol.39, pp.457-88, 2013.

H. Xie, L. Li, T. Chen, and H. Zhao, Investigation on gasoline homogeneous charge compression ignition (HCCI) combustion implemented by residual gas trapping combined with intake preheating through waste heat recovery, Energy Convers Manag, vol.86, pp.8-19, 2014.

X. Lü, W. Chen, and Z. Huang, A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion, Fuel, vol.84, pp.1074-83, 2005.

A. Çeper, B. Yildiz, M. Akansu, S. O. Kahraman, and N. , Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes, Energy, vol.136, pp.72-81, 2015.

X. Wang, H. Xie, L. Li, L. Xie, T. Chen et al., Effect of the thermal stratification on SI-CAI hybrid combustion in a gasoline engine, Appl Therm Eng, vol.61, pp.451-60, 2013.

A. W. Gray and T. W. Ryan, Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel, 1997.

M. Christensen, A. Hultqvist, and B. Johansson, Demonstrating the multi-fuel capability of a homogeneous charge compression ignition engine with variable compression ratio, SAE Trans, vol.108, pp.2099-113, 1999.

T. W. Ryan and T. J. Callahan, Homogeneous Charge Compression Ignition of Diesel Fuel, SAE Tech Pap, p.961160, 1996.

Z. Peng, H. Zhao, and N. Ladommatos, Effects of Air / Fuel Ratios and EGR Rates on HCCI Combustion of n-heptane , a Diesel Type Fuel Reprinted From : Homogeneous Charge Compression Ignition, 2003.

Y. Takeda and N. Keiichi, Emission Characteristics of Premixed Lean Diesel Combustion with Extre?me Early Staged Fuel Injection, Soc Automot Eng, pp.938-985, 1996.

A. Harada, N. Shimazaki, S. Sasaki, T. Miyamoto, H. Akagawa et al., The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine, SAE Tech Pap, vol.980533, 1998.

M. Y. Kim, J. W. Kim, C. S. Lee, and J. H. Lee, Effect of compression ratio and spray injection angle on HCCI combustion in a small DI diesel engine, Energy and Fuels, vol.20, pp.69-76, 2006.

H. Akagawa, T. Miyamoto, A. Harada, S. Sasaki, N. Shimazaki et al., Approaches to Solve Problems of the Premixed Lean Diesel Combustion, Soc Automot Eng, vol.1, pp.120-152, 1999.

Y. Iwabuchi, K. Kawai, T. Shoji, and Y. Takeda, Trial of New Concept Diesel Combustion SystemPremixed Compression-Ignited Combustion

B. Walter and B. Gatellier, Development of the High Power NADITM Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions, SAE Tech Pap, 1744.

M. Sjöberg, J. E. Dec, and W. Hwang, Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition, 2007.

W. Ojeda, W. Ojeda, R. Kumar, R. Kumar, P. Zoldak et al., Development of a Fuel Injection Strategy for Diesel, Sae, 2008.

Y. Murata, J. Kusaka, Y. Daisho, D. Kawano, H. Suzuki et al., Miller-PCCI Combustion in an HSDI Diesel Engine with VVT, SAE Int J Engines, vol.1, pp.444-56, 2008.

X. He, R. P. Durrett, and Z. Sun, Late intake valve closing as an emissions control strategy at Tier 2 Bin 5 engine-out NOx level, SAE Tech Pap, vol.1, pp.2008-2009, 2008.

J. E. Dec and M. Sjöbera, Isolating the effects of fuel chemistry on combustion phasing in an HCCI engine and the potential of fuel stratification for ignition control, SAE Trans, vol.113, pp.239-57, 2004.

M. Sjöberg and J. E. Dec, Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels, SAE Tech Pap, 2006.

W. Hwang, J. E. Dec, and M. Sjöberg, Fuel Stratification for Low-Load HCCI Combustion: Performance & amp; Fuel-PLIF Measurements. Library (Lond), pp.776-0790, 2007.

Y. Yang, J. E. Dec, N. Dronniou, M. Sjöberg, and W. Cannella, Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of TwoStage Ignition Fuels, SAE Int J Engines, vol.4, pp.2011-2012, 2011.

Y. Yang, J. E. Dec, N. Dronniou, and M. Sjöberg, Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels, Proc Combust Inst, vol.33, pp.3047-55, 2011.

A. B. Dempsey, S. J. Curran, and R. M. Wagner, A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification, Int J Engine Res, vol.1, 2016.

J. E. Dec, Y. Yang, J. Dernotte, and J. C. , Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC), SAE Int J Engines, vol.8, pp.935-55, 2015.

C. Ji, J. Dec, J. Dernotte, and W. Cannella, Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm, SAE Int J Engines, vol.9, pp.2016-2017, 2016.

G. T. Kalghatgi, P. Risberg, and H. Angstrom, Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel, SAE Tech, 2007.

G. Kalghatgi and B. Johansson, Gasoline compression ignition approach to efficient, clean and affordable future engines, Proc Inst Mech Eng Part D J Automob Eng, p.95440701769427, 2017.

G. T. Kalghatgi, C. Gosling, and J. M. , The outlook for transport fuels : Part 2, Pet Technol Q, 2016.

G. T. Kalghatgi, C. Gosling, and J. M. , The outlook for transport fuels : Part 1, Pet Technol Q, 2016.

G. T. Kalghatgi, Developments in internal combustion engines and implications for combustion science and future transport fuels, Proc Combust Inst, vol.35, pp.101-116, 2015.

Y. Viollet, J. Chang, and G. Kalghatgi, Compression Ratio and Derived Cetane Number Effects on Gasoline Compression Ignition Engine Running with Naphtha Fuels, SAE Int J Fuels Lubr, vol.7, pp.412-438, 2014.

G. T. Kalghatgi, R. Kumara-gurubaran, D. A. , H. A. Hardalupas, Y. et al., Some advantages and challenges of running a Euro IV, V6 diesel engine on a gasoline fuel, Fuel, vol.108, pp.197-207, 2013.

A. Kalghatgi, G. T. Babiker, and H. , Flash points and volatility characteristics of gasoline/diesel blends, Fuel, vol.153, pp.67-76, 2015.

G. T. Kalghatgi, P. Risberg, and H. Ångström, Advantages of Fuels with High Resistance to Autoignition in Late-injection, Low-temperature, Compression Ignition Combustion, SAE Tech Pap, 2006.

V. Manente, C. Zander, B. Johansson, P. Tunestal, and W. Cannella, An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion, SAE Tech Pap, vol.1, 2010.

V. Manente, Gasoline Partially Premixed Combustion An Advanced Internal Combustion Engine Concept Aimed to High Efficiency, Low Emissions and Low Acoustic Noise in the Whole Load Range, 2010.

V. Manente, B. Johansson, P. Tunestal, M. Sonder, and S. Serra, Gasoline partially premixed combustion: high efficiency, low NOx and low soot by using an advanced combustion strategy and a compression ignition engine, Int J Veh Des, vol.59, pp.108-136, 2012.

J. E. Dec, Y. Yang, and N. Dronniou, Boosted HCCI -Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline, SAE Int J Engines, vol.4, pp.2011-2012, 2011.

M. Sellnau, J. Sinnamon, K. Hoyer, and H. Husted, Gasoline Direct Injection Compression Ignition ( GDCI ) -Diesel-like Efficiency with Low CO2 Emissions, 1386.

M. C. Sellnau, J. Sinnamon, K. Hoyer, and H. Husted, Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM, SAE Int J Engines, vol.5, pp.2012-2013, 2012.

M. C. Sellnau, J. Sinnamon, K. Hoyer, J. Kim, M. Cavotta et al., Part-Load Operation of Gasoline Direct-Injection Compression Ignition (GDCI) Engine, SAE Int J Engines, vol.2013, pp.1-24

K. S. Hoyer, M. Sellnau, J. Sinnamon, and H. Husted, Boost System Development for Gasoline DirectInjection Compression-Ignition (GDCI), SAE Int J Engines, vol.6, pp.815-841, 2013.

M. C. Sellnau, J. Sinnamon, K. Hoyer, J. Kim, M. Cavotta et al., Part-Load Operation of Gasoline Direct-Injection Compression Ignition ( GDCI ) Engine. SAE

M. Sellnau, M. Foster, K. Hoyer, W. Moore, J. Sinnamon et al., Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine. SAE

M. Sellnau, M. Foster, W. Moore, J. Sinnamon, K. Hoyer et al., Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions, SAE Int J Engines, vol.9, 2016.

J. Kodavasal, C. P. Kolodziej, S. A. Ciatti, and S. Som, Computational Fluid Dynamics Simulation of Gasoline Compression Ignition, J Energy Resour Technol, vol.137, p.32212, 2015.

M. Sellnau, W. Moore, J. Sinnamon, K. Hoyer, M. Foster et al., Cylinder Engine for High Fuel Efficiency and Low Emissions, SAE Int J Engines, vol.8, pp.775-90, 2015.

C. Kolodziej, J. Kodavasal, S. Ciatti, S. Som, N. Shidore et al., Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

P. Borgqvist, P. Tunestal, and B. Johansson, Gasoline Partially Premixed Combustion in a Light Duty Engine at Low Load and Idle Operating Conditions, 2012.
DOI : 10.4271/2012-01-0687

P. Borgqvist, M. Tuner, A. Mello, P. Tunestal, and B. Johansson, The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC, 2012.

P. Borgqvist, P. Tunestal, and B. Johansson, Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions, SAE Int J Engines, vol.6, pp.2013-2014, 2013.

J. Chang, Y. Viollet, A. Amer, and G. Kalghatgi, Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion with Naphtha Fuel, SAE Tech Pap, 2013.

J. Chang, G. Kalghatgi, A. Amer, P. Adomeit, H. Rohs et al., Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission, SAE Int J Engines, vol.6, pp.101-120, 2013.

V. Caprio, I. A. Lignola, and P. G. , Ozone Activated Low Temperature Combustion of Propane in a C, S.T.R. Combust Sci Technol, vol.35, pp.215-239, 1983.

T. Ombrello, S. H. Won, Y. Ju, and S. Williams, Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3, Combust Flame, vol.157, pp.1906-1921, 2010.

A. M. Starik, V. E. Kozlov, and N. S. Titova, On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture, Combust Flame, vol.157, pp.313-340, 2010.

F. Halter, P. Higelin, and P. Dagaut, Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane, Energy & Fuels, vol.25, pp.2909-2925, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02020201

Z. H. Wang, L. Yang, B. Li, Z. S. Li, Z. W. Sun et al., Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations, Combust Flame, vol.159, pp.120-129, 2012.

X. Liang, Z. Wang, W. Weng, Z. Zhou, Z. Huang et al., Study of ozone-enhanced combustion in H2/CO/N2/air premixed flames by laminar burning velocity measurements and kinetic modeling, Int J Hydrogen Energy, vol.38, pp.1177-88, 2013.

S. H. Won, B. Jiang, P. Diévart, C. H. Sohn, and Y. Ju, Self-sustaining n-heptane cool diffusion flames activated by ozone, Proc Combust Inst, vol.35, pp.881-889, 2015.
DOI : 10.1016/j.proci.2014.05.021

W. Weng, E. Nilsson, A. Ehn, J. Zhu, Y. Zhou et al., Investigation of formaldehyde enhancement by ozone addition in CH4/air premixed flames, Combust Flame, vol.162, pp.1284-93, 2015.

M. Pinchak, T. Ombrello, C. Carter, E. Gutmark, and V. Katta, The effects of hydrodynamic stretch on the flame propagation enhancement of ethylene by addition of ozone, Phil Trans R Soc A, vol.373, 2015.

X. Gao, Y. Zhang, S. Adusumilli, J. Seitzman, and W. Sun, The Effect of Ozone Addition on Flame Propagation, pp.1-27, 2015.

X. Gao, Y. Zhang, S. Adusumilli, J. Seitzman, W. Sun et al., The effect of ozone addition on laminar flame speed, Combust Flame, vol.162, pp.3914-3938, 2015.

A. Ehn, J. J. Zhu, P. Petersson, Z. S. Li, M. Aldén et al., Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations, Proc Combust Inst, vol.35, pp.3487-95, 2015.

X. Gao, Y. Zhang, S. Adusumilli, J. Seitzman, W. Sun et al., The effect of ozone addition on laminar flame speed, Combust Flame, vol.162, pp.3914-3938, 2015.

J. D. Kribs, P. V. Shah, A. R. Hutchins, W. A. Reach, R. D. Muncey et al., The stabilization of partially-premixed jet flames in the presence of high potential electric fields, J Electrostat, vol.84, pp.1-9, 2016.

C. B. Reuter, S. H. Won, and Y. Ju, Flame structure and ignition limit of partially premixed cool flames in a counterflow burner, Proc Combust Inst, vol.36, pp.1513-1535, 2017.

M. Hajilou, T. Ombrello, S. H. Won, and E. Belmont, Experimental and numerical characterization of freely propagating ozone-activated dimethyl ether cool flames, Combust Flame, vol.176, pp.326-359, 2017.

F. Foucher, P. Higelin, C. Mouna?m-rousselle, and P. Dagaut, Influence of ozone on the combustion of n-heptane in a HCCI engine, Proc Combust Inst, vol.34, pp.3005-3017, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02020485

T. Tachibana, K. Hirata, H. Nishida, and H. Osada, Effect of ozone on combustion of compression ignition engines, Combust Flame, vol.85, pp.515-524, 1991.

S. M. Aceves, D. Flowers, J. Martinez-frias, F. Espinosa-loza, W. J. Pitz et al., Fuel and Additive Characterization for HCCI Combustion, SAE Tech Pap, pp.2003-2004, 2003.

A. Mohammadi, H. Kawanabe, T. Ishiyama, M. Shioji, and A. Komada, Study on combustion control in natural-gas PCCI engines with ozone addition into intake gas, SAE Tech Pap, 2006.

H. Nishida and T. Tachibana, Homogeneous Charge Compression Ignition of Natural Gas/Air Mixture with Ozone Addition, J Propuls Power, vol.22, pp.151-158, 2006.

J. Masurier, F. Foucher, G. Dayma, C. Mounaïm-rousselle, and P. Dagaut, Towards HCCI Control by Ozone Seeding, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00916250

J. B. Masurier, F. Foucher, G. Dayma, and P. Dagaut, Homogeneous charge compression ignition combustion of primary reference fuels influenced by ozone addition, Energy and Fuels, vol.27, pp.5495-505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02020533

J. Masurier, F. Foucher, G. Dayma, and P. Dagaut, Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine, SAE Tech Pap, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077634

J. Masurier, F. Foucher, G. Dayma, and P. Dagaut, Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion, Appl Energy, vol.160, pp.566-80, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276148

J. Masurier, F. Foucher, G. Dayma, and P. Dagaut, Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide, Proc Combust Inst, vol.35, pp.3125-3157, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02014618

J. Masurier, F. Foucher, G. Dayma, C. Rousselle, and P. Dagaut, Application of an Ozone Generator to Control the Homogeneous Charge Compression Ignition Combustion Process, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233979

P. M. Pinazzi, J. Masurier, G. Dayma, P. Dagaut, and F. Foucher, Towards Stoichiometric Combustion in HCCI Engines: Effect of Ozone Seeding and Dilution, SAE Tech. Pap, 2015.

K. Nagatsu, A. Inoue, K. Matsumoto, T. Kaminaga, T. Miyamoto et al., Control Device for Compression Ignition-Type Engine, vol.9, pp.441-443, 2017.

C. P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames, Symp Combust, vol.13, pp.373-80, 1971.

G. A. Lavoie, J. B. Heywood, and J. C. Keck, Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines, Combust Sci Technol, vol.1, pp.313-339, 1970.

E. L. Merryman and A. Levy, Nitrogen oxide formation in flames: The roles of NO2 and fuel nitrogen, Symp Combust, vol.15, pp.80372-80381, 1975.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski et al.,

P. Dagaut and G. Dayma, The high-pressure reduction of nitric oxide by a natural gas blend, Combust Flame, vol.143, pp.135-142, 2005.

M. Lenner, Nitrogen dioxide in exhaust emissions from motor vehicles, Atmos Environ, vol.21, pp.37-43, 1987.

A. Dubreuil, F. Foucher, C. Mounaïm-rousselle, G. Dayma, and P. Dagaut, HCCI combustion: Effect of NO in EGR, Proc Combust Inst, vol.31, pp.2879-86, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02020358

G. Moréac, P. Dagaut, J. F. Roesler, and M. Cathonnet, Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm, Combust Flame, vol.145, pp.512-532, 2006.

J. M. Anderlohr, R. Bounaceur, P. Da-cruz, A. Battin-leclerc, and F. , Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels, Combust Flame, vol.156, pp.505-526, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00369907

J. Benajes, J. J. López, S. Molina, and P. Redón, New 0-D methodology for predicting NO formation under continuously varying temperature and mixture composition conditions, Energy Convers Manag, vol.91, pp.367-76, 2015.

F. Contino, F. Foucher, P. Dagaut, T. Lucchini, D. 'errico et al., Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single cylinder HCCI engine, Combust Flame, vol.160, pp.1476-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02020498

M. Kopp, M. Brower, O. Mathieu, E. Petersen, and F. Güthe, CO2* chemiluminescence study at low and elevated pressures, Appl Phys B Lasers Opt, vol.107, pp.529-567, 2012.

R. Collin, J. Nygren, M. Richter, M. Aldén, L. Hildingsson et al., Simultaneous OH-and Formaldehyde-LIF Measurements in an HCCI Engine. SAE, Trans J Fuels Lubr, vol.112, 2003.

R. D. Reitz and R. Diwakar, Structure of High-Pressure Fuel Sprays, 1987.

P. K. Senecal, K. J. Richards, E. Pomraning, T. Yang, M. Z. Dai et al., A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations, pp.776-90, 2007.

D. P. Schmidt and C. J. Rutland, A New Droplet Collision Algorithm, J Comput Phys, vol.164, pp.62-80, 2000.

A. B. Liu, D. Mather, and R. D. Reitz, Modeling the Effects of Drop Drag and Breakup on Fuel Sprays, 1993.

M. Mehl, J. Y. Chen, W. J. Pitz, S. M. Sarathy, and C. K. Westbrook, An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling, Energy & Fuels, vol.25, pp.5215-5238, 2011.

M. Mehl, W. J. Pitz, C. K. Westbrook, and H. J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc Combust Inst, vol.33, 2011.

Y. Chen, B. Wolk, M. Mehl, W. K. Cheng, J. Chen et al., Development of a re duce d chemical mechanism targeted for a 5-component gasoline surrogate: A case study on the heat release nature in a GCI engine, Combust Flame, vol.178, pp.268-76, 2016.

J. Chen, A General Procedure for Constructing Reduced Reaction Mechanisms with Given Independent Relations, Combust Sci Technol, vol.57, pp.89-94, 1988.

S. Som, D. Longman, S. Aithal, R. Bair, M. García et al., A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations, 2013.

H. J. Kim, S. H. Park, K. S. Lee, and C. S. Lee, A study of spray strategies on improvement of engine performance and emissions reduction characteristics in a DME fueled diesel engine, Energy, vol.36, pp.1802-1815, 2011.

F. V. Tinaut, M. Reyes, B. Giménez, and J. Pastor, Measurements of OH* and CH* chemiluminescence in premixed flames in a constant volume combustion bomb under autoignition conditions, Energy and Fuels, vol.25, pp.119-148, 2011.

S. A. Skeen, J. Manin, and L. M. Pickett, Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc Combust Inst, vol.35, pp.3167-74, 2015.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh et al., Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation, Spectrochim ActaPart A Mol Biomol Spectrosc, vol.59, pp.3347-56, 2003.

Q. Tang, H. Liu, M. Li, M. Yao, and Z. Li, Study on ignition and flame development in gasoline partially premixed combustion using multiple optical diagnostics, Combust Flame, vol.177, pp.98-108, 2017.

. Chemkin, Senkin: a fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, 1997.

P. M. Pinazzi and F. Foucher, Influence of injection parameters, ozone seeding and residual NO on a Gasoline Compression Ignition (GCI) engine at low load, Proc Combust Inst, vol.36, pp.3659-68, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01597111

P. Borgqvist, P. Tunestal, and B. Johansson, Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions, SAE Int J Engines, vol.6, pp.366-78, 2013.

M. Sellnau, W. Moore, J. Sinnamon, K. Hoyer, M. Foster et al., Cylinder Engine for High Fuel Efficiency and Low Emissions, SAE Int J Engines, vol.8, pp.775-90, 2015.