Tail Risk in a Retail Payments System - Archive ouverte HAL Access content directly
Journal Articles Journal of Economics and Statistics Year : 2018

Tail Risk in a Retail Payments System

, , , (1)
1
Leonard Sabetti
  • Function : Author
David Jacho-Chávez
  • Function : Author
Robert Petrunia
  • Function : Author
Marcel Voia
  • Function : Author

Abstract

Abstract In this paper, we study a credit risk (collateral) management scheme for the Canadian retail payment system designed to cover the exposure of a defaulting member. We estimate ex ante the size of a collateral pool large enough to cover exposure for a historical worst-case default scenario. The parameters of the distribution of the maxima are estimated using two main statistical approaches based on extreme value models: Block-Maxima for different window lengths (daily, weekly and monthly) and Peak-over-Threshold. Our statistical model implies that the largest daily net debit position across participants exceeds roughly $1.5 billion once a year. Despite relying on extreme-value theory, the out of sample forecasts may still underestimate an actual exposure given the absence of observed data on defaults and financial stress in Canada. Our results are informative for optimal collateral management and system design of pre-funded retail-payment schemes.
Not file

Dates and versions

hal-03573058 , version 1 (14-02-2022)

Identifiers

Cite

Leonard Sabetti, David Jacho-Chávez, Robert Petrunia, Marcel Voia. Tail Risk in a Retail Payments System. Journal of Economics and Statistics, 2018, 238 (3-4), pp.353-369. ⟨10.1515/jbnst-2018-0024⟩. ⟨hal-03573058⟩

Collections

UNIV-ORLEANS
11 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More