L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from, pp.265-270, 2011.

A. Züttel, Materials for hydrogen storage, Mater. Today, vol.6, pp.24-33, 2003.

J. Dong, X. Wang, H. Xu, Q. Zhao, and J. Li, Hydrogen storage in several microporous zeolites, Int. J. Hydrog. Energy, vol.32, pp.4998-5004, 2007.

H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li et al., Recent advances in gas storage and separation using metal-Organic frameworks, Mater, vol.21, pp.108-121, 2018.

S. Niaz, T. Manzoor, and A. H. Pandith, Hydrogen storage: Materials, methods and perspectives, Renew. Sustain. Energy Rev, vol.50, pp.457-469, 2015.

R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, Hydrogen storage by carbon materials, J. Power Source, vol.159, pp.781-801, 2006.

Y. X. Ma, X. Li, W. J. Shao, Y. L. Kou, H. P. Yang et al., Fabrication of 3D Porous Polyvinyl Alcohol/Sodium Alginate/Graphene Oxide Spherical Composites for the Adsorption of Methylene Blue, J. Nanosci. Nanotechnol, vol.20, pp.2205-2213, 2020.

Y. Yan, S. Zhou, and S. Liu, Atomistic simulation on mechanical behaviors of Al/SiC nanocomposites, Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT), pp.357-362, 2017.

G. Sethia and A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage, Carbon, vol.99, pp.289-294, 2016.

Z. Ozturk, C. Baykasoglu, and M. Kirca, Sandwiched graphene-fullerene composite: A novel 3-D nanostructured material for hydrogen storage, Int. J. Hydrog. Energy, vol.41, pp.6403-6411, 2016.

C. Wu, T. Fang, and J. Lo, Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity, Int. J. Hydrog. Energy, vol.37, pp.14211-14216, 2012.

M. A. De-la-casa-lillo, F. Lamari-darkrim, D. Cazorla-amorós, and A. Linares-solano, Hydrogen Storage in Activated Carbons and Activated Carbon Fibers, J. Phys. Chem. B, vol.106, pp.10930-10934, 2002.

M. Rzepka, P. Lamp, and M. A. De-la-casa-lillo, Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes, J. Phys. Chem. B, vol.102, pp.10894-10898, 1998.

, Nanomaterials 2020, vol.10, p.344

C. D. Wu, T. H. Fang, J. Y. Lo, and Y. L. Feng, Molecular dynamics simulations of hydrogen storage capacity of few-layer grapheme, J. Mol. Model, vol.19, pp.3813-3819, 2013.

H. Xiao, S. H. Li, and J. X. Cao, First-principles study of Pd-decorated carbon nanotube for hydrogen storage, Chem. Phys. Lett, vol.483, pp.111-114, 2009.

S. Taheri, M. Shadman, A. Soltanabadi, and Z. Ahadi, Grand canonical Monte Carlo simulation of hydrogen physisorption in Li-and K-doped single-walled silicon carbide nanotube, Int. Nano Lett, vol.4, pp.81-90, 2014.

S. Gadipelli and Z. X. Guo, Graphene-based materials: Synthesis and gas sorption, storage and separation, Prog. Mater. Sci, vol.69, pp.1-60, 2015.

C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon et al., Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci, vol.112, pp.15609-15612, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240650

E. Braun, Y. Lee, S. M. Moosavi, S. Barthel, R. Mercado et al., Generating carbon schwarzites via zeolite-templating, Proc. Natl. Acad. Sci, vol.115, pp.8116-8124, 2018.

K. Nueangnoraj, H. Nishihara, K. Imai, H. Itoi, T. Ishii et al., Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y. Carbon, vol.62, pp.455-464, 2013.

T. Roussel, A. Didion, R. J. Pellenq, R. Gadiou, C. Bichara et al., Experimental and Atomistic Simulation Study of the Structural and Adsorption Properties of Faujasite Zeolite?Templated Nanostructured Carbon Materials, J. Phys. Chem. C, vol.111, pp.15863-15876, 2007.

J. D. Moore, J. C. Palmer, Y. Liu, T. J. Roussel, J. K. Brennan et al., Adsorption and diffusion of argon confined in ordered and disordered microporous carbons, Appl. Surf. Sci, vol.256, pp.5131-5136, 2010.

L. Xie, H. An, C. He, Q. Qin, and Q. Peng, Mechanical Properties of Vacancy Tuned Carbon Honeycomb, Nanomaterials, vol.9, p.156, 2019.

S. Gautam, A. I. Kolesnikov, G. Rother, S. Dai, Z. Qiao et al., Effects of Confinement and Pressure on the Vibrational Behavior of Nano-Confined Propane, J. Phys. Chem. A, vol.122, pp.6736-6745, 2018.

N. V. Krainyukova and E. N. Zubarev, Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species, Phys. Rev. Lett, vol.116, p.55501, 2016.

Q. Qin, A. Haojie, H. Chenwei, X. Lu, and P. Qing, Anisotropic and temperature dependent mechanical properties of carbon honeycomb, Nanotechnology, 2019.

A. Kuc and G. Seifert, Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes, Phys. Rev. B, vol.74, 2006.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. Mcgill et al., Nature, vol.524, pp.204-207, 2015.

F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al.,

, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, vol.347, 2015.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater, vol.149, pp.134-141, 2012.

R. L. Martin, B. Smit, and M. Haranczyk, Addressing challenges of identifying geometrically diverse sets of crystalline porous materials, J. Chem. Inf. Model, vol.52, pp.308-318, 2012.

M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia et al., Characterization and comparison of pore landscapes in crystalline porous materials, J. Mol. Graph. Model, vol.44, pp.208-219, 2013.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

Q. Peng, F. Meng, Y. Yang, C. Lu, H. Deng et al., Shockwave generates <100> dislocation loops in bcc iron, Nat. Commun, vol.9, p.4880, 2018.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-The Open Visualization Tool, Model. Simul. Mater. Sci. Eng, vol.18, p.15012, 2010.

, Nanomaterials 2020, vol.10, p.344

L. Xie, H. An, Q. Peng, Q. Qin, and Y. Zhang, Sensitive Five-Fold Local Symmetry to Kinetic Energy of Depositing Atoms in Cu-Zr Thin Film Growth, Materials, vol.11, 2018.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2001.

W. B. Donald, A. S. Olga, A. H. Judith, J. S. Steven, N. Boris et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, vol.14, p.783, 2002.

F. D. Lamari and D. Levesque, Hydrogen adsorption on functionalized grapheme, Carbon, vol.49, pp.5196-5200, 2011.

Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett, vol.74, pp.2307-2309, 1999.

F. Darkrim and D. Levesque, High adsorptive property of opened carbon nanotubes at 77 K, J. Phys. Chem. B, vol.104, pp.6773-6776, 2000.

J. W. Burress, S. Gadipelli, J. Ford, J. M. Simmons, W. Zhou et al., Graphene oxide framework materials: Theoretical predictions and experimental results, Angew. Chem. Int. Ed. Engl, vol.49, pp.8902-8904, 2010.

G. Srinivas, J. W. Burress, J. Ford, and T. Yildirim, Porous graphene oxide frameworks: Synthesis and gas sorption properties, J. Mater. Chem, vol.21, pp.11323-11329, 2011.

H. W. Langmi, D. Book, A. Walton, S. R. Johnson, M. M. Al-mamouri et al., Hydrogen storage in ion-exchanged zeolites, J. Alloys Compd, vol.406, pp.637-642, 2005.

L. Wang and R. T. Yang, Hydrogen Storage Properties of Low-Silica Type X Zeolites, Ind. Eng. Chem. Res, vol.49, pp.3634-3641, 2010.

K. H. Chung, High-pressure hydrogen storage on microporous zeolites with varying pore properties, vol.35, pp.2235-2241, 2010.

P. F. Zito, A. Caravella, A. Brunetti, E. Drioli, and G. Barbieri, Light gases saturation loading dependence on temperature in LTA 4A zeolite, Microporous Mesoporous Mater, vol.249, pp.67-77, 2017.

N. K. Bär, H. Ernst, H. Jobic, and J. Kärger, Combined quasi-elastic neutron scattering and NMR study of hydrogen diffusion in zeolites, Magn. Reson. Chem, vol.37, pp.79-83, 1999.