M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh processing, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00538098

P. Alliez and C. Gotsman, Recent advances in compression of 3d meshes, Advances in multiresolution for geometric modelling, pp.3-26, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00071613

H. Lee, Ç. Dikici, G. Lavoué, and F. Dupont, Joint reversible watermarking and progressive compression of 3d meshes, Vis Comput, vol.27, issue.6, pp.781-792, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01354390

K. Wang, G. Lavoué, F. Denis, and A. Baskurt, A comprehensive survey on three-dimensional mesh watermarking, IEEE Trans Multimed, vol.10, issue.8, pp.1513-1527, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01531229

Y. Wang and H. Shi-min, A new watermarking method for 3d models based on integral invariants, IEEE Trans Vis Comput Graph, vol.15, issue.2, pp.285-294, 2009.

M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics, Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp.209-216, 1997.

D. P. Luebke, A developer's survey of polygonal simplification algorithms, IEEE Comput Graph Appl, vol.21, issue.3, pp.24-35, 2001.

M. Corsini, M. Larabi, G. Lavoué, O. Pet?ík, L. Vá?a et al., Perceptual metrics for static and dynamic triangle meshes, Computer graphics forum, vol.32, pp.101-125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00784901

P. Cignoni, C. Rocchini, and R. Scopigno, Metro: measuring error on simplified surfaces, Computer graphics forum, vol.17, pp.167-174, 1998.

N. Aspert, D. Santa-cruz, and T. Ebrahimi, Mesh: measuring errors between surfaces using the Hausdorff distance, Proceedings. 2002 IEEE international conference on multimedia and expo, 2002. ICME'02, vol.1, pp.705-708, 2002.

G. Lavoué and M. Corsini, A comparison of perceptually-based metrics for objective evaluation of geometry processing, IEEE Trans Multimed, vol.12, issue.7, pp.636-649, 2010.

A. Bulbul, T. Capin, G. Lavoué, and M. Preda, Assessing visual quality of 3-d polygonal models, IEEE Signal Process Mag, vol.28, issue.6, pp.80-90, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00941105

W. Lin, J. Kuo, and C. , Perceptual visual quality metrics: a survey, J Vis Commun Image Represent, vol.22, issue.4, pp.297-312, 2011.

W. Lin, T. Ebrahimi, P. C. Loizou, S. Moller, and A. R. Reibman, Introduction to the special issue on new subjective and objective methodologies for audio and visual signal processing, IEEE J Sel Top Signal Process, vol.6, issue.6, pp.614-615, 2012.

Z. Karni and C. Gotsman, Spectral compression of mesh geometry, Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp.279-286, 2000.

O. Sorkine, D. Cohen-or, and S. Toledo, High-pass quantization for mesh encoding, Symposium on geometry processing, p.42, 2003.

Y. Pan, I. Cheng, and A. Basu, Quality metric for approximating subjective evaluation of 3-d objects, IEEE Trans Multimed, vol.7, issue.2, pp.269-279, 2005.

Z. Bian, H. Shi-min, and R. R. Martin, Evaluation for small visual difference between conforming meshes on strain field, J Comput Sci Technol, vol.24, issue.1, pp.65-75, 2009.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, vol.13, issue.4, pp.600-612, 2004.

G. Lavoué, E. D. Gelasca, F. Dupont, A. Baskurt, and T. Ebrahimi, Perceptually driven 3d distance metrics with application to watermarking, SPIE optics ? photonics. International Society for Optics and Photonics, pp.63120-63120, 2006.

G. Lavoué, A multiscale metric for 3d mesh visual quality assessment, Computer graphics forum, vol.30, pp.1427-1437, 2011.

F. Torkhani, K. Wang, and J. Chassery, A curvature tensor distance for mesh visual quality assessment, Computer vision and graphics, pp.253-263, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00719315

M. Corsini, E. D. Gelasca, T. Ebrahimi, and M. Barni, Watermarked 3-d mesh quality assessment, IEEE Trans Multimed, vol.9, issue.2, pp.247-256, 2007.

L. Vá?a and J. Rus, Dihedral angle mesh error: a fast perception correlated distortion measure for fixed connectivity triangle meshes, Computer graphics forum, vol.31, pp.1715-1724, 2012.

K. Wang, F. Torkhani, and A. Montanvert, A fast roughnessbased approach to the assessment of 3d mesh visual quality, Comput Graph, vol.36, issue.7, pp.808-818, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734726

I. Abouelaziz, E. Hassouni, M. Cherifi, and H. , No-reference 3d mesh quality assessment based on dihedral angles model and support vector regression, International conference on image and signal processing, pp.369-377, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430400

I. Abouelaziz, E. Hassouni, M. Cherifi, and H. , A curvature based method for blind mesh visual quality assessment using a general regression neural network, 2016 12th international conference on signal-image technology & internet-based systems (SITIS). IEEE, pp.793-797, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01557927

A. Nouri, C. Charrier, and O. Lézoray, 3d blind mesh quality assessment index, Electron Imaging, vol.2017, issue.20, pp.9-26, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01489780

A. K. Moorthy and A. C. Bovik, A two-step framework for constructing blind image quality indices, IEEE Signal Process Lett, vol.17, issue.5, pp.513-516, 2010.

M. A. Saad, A. C. Bovik, and C. Charrier, A dct statistics-based blind image quality index, IEEE Signal Process Lett, vol.17, issue.6, pp.583-586, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00808353

C. Li, A. C. Bovik, and X. Wu, Blind image quality assessment using a general regression neural network, IEEE Transa Neural Netw, vol.22, issue.5, pp.793-799, 2011.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, p.436, 2015.

W. Zhang, Q. Chenfei, L. Ma, J. Guan, and R. Huang, Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network, Pattern Recognit, vol.59, pp.176-187, 2016.

A. Nouri, C. Charrier, and O. Lézoray, Full-reference saliencybased 3d mesh quality assessment index, 2016 IEEE international conference on image processing (ICIP), pp.1007-1011, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01337735

U. Engelke, R. Pepion, L. Callet, P. Zepernick, and H. , Linking distortion perception and visual saliency in h. 264/AVC coded video containing packet loss, Visual communications and image processing 2010. International Society for optics and photonics, vol.7744, p.774406, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00617099

C. H. Lee, A. Varshney, and D. W. Jacobs, Mesh saliency, ACM Trans Graph: TOG, vol.24, pp.659-666, 2005.

L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans Pattern Anal Mach Intell, vol.20, issue.11, pp.1254-1259, 1998.

A. Mittal, A. K. Moorthy, and A. C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Trans Image Process, vol.21, issue.12, pp.4695-4708, 2012.

V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), pp.807-814, 2010.

L. Kang, P. Ye, Y. Li, and D. Doermann, Convolutional neural networks for no-reference image quality assessment, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1733-1740, 2014.

G. Lavoué, M. C. Larabi, and L. Vá?a, On the efficiency of image metrics for evaluating the visual quality of 3d models, IEEE Trans Vis Comput Graph, vol.22, issue.8, pp.1987-1999, 2016.

S. Silva, B. S. Santos, C. Ferreira, and J. Madeira, A perceptual data repository for polygonal meshes, Second international conference in visualisation, 2009. VIZ'09. IEEE, pp.207-212, 2009.

Z. Wang and A. C. Bovik, Modern image quality assessment, Synth Lect Image Video Multimed Process, vol.2, pp.1-156, 2006.

P. G. Engeldrum, Psychometric scaling: avoiding the pitfalls and hazards, PICS, pp.101-107, 2001.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations