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Abstract: An analytical method is proposed to solve the optimization problem of energy
management for a parallel hybrid electric vehicle. This method is based on Pontryagin’s
Maximum Principle (PMP) for a class of Hybrid Dynamic Systems (HDS). Therefore, the
analytical models are used, which are an approximation of the reference models. A numerical
method based on the reference models is also used in order to validate the analytical solution
by comparing their results. In this paper, two types of optimization variables are considered:
continuous and discrete. The first type is the power split between the Internal Combustion
Engine (ICE) and the Electric Machine (EM). The second one is the transmission ratio, which
includes the ICE On/Off decision. The results show that the analytical and the numerical
solutions are almost the same. In addition, the analytical approach requires less computing
time and requires less memory space than the numerical method.

Keywords: Energy Management Strategy, Hybrid Electric Vehicles (HEV), Analytical Method,
Convex optimization, Pontryagin’s Maximum Principle (PMP).

1. INTRODUCTION

In the automotive sector, the hybridization of the vehicle
powertrain is considered as an alternative to reduce energy
consumption and pollution emissions. Hybrid vehicles use
at least two distinct types of power. Among them, the
Hybrid Electric Vehicle (HEV) is composed of an internal
combustion engine and one or more electric machines, as
well as an energy buffer.

There are many approaches to design an optimal en-
ergy management strategy: deterministic Dynamic Pro-
gramming (DP) (Pérez et al., 2006; Debert et al., 2010),
stochastic DP (Johannesson et al., 2007), and Pontryagin’s
Maximum Principle (PMP) (Serrao et al., 2009; Kim et al.,
2011; Stockar et al., 2011). While it is a globally optimal
energy management, dynamic programming is computa-
tionally expensive, which limits its application to low-order
systems (typically two states). The PMP offers the possi-
bility to compact the optimization problem by defining
the Hamiltonian function to handle the balance between
the fuel cost and other related constraints, typically the
battery state of charge. However, the main difficulty of
the PMP method remains in finding the co-state.

The PMP method is widely used to solve in this area,
analytically and numerically. In Elbert et al. (2014), the
optimal torque split and the engine state On/Off were
computed analytically using the PMP approach for a
serial hybrid electric bus. Pham et al. (2016) proposed to

calculate in addition the optimal EM On/Off analytically
using the PMP, while in Nüesch et al. (2014), the engine
On/Off and gearshift stategies were given numerically by
a combination of DP and PMP. In this study, we focus on
finding the optimal power split, engine state and gearshift
analytically using PMP.

The objective of this paper is to find an energy manage-
ment solution that minimizes the fuel consumed by the
ICE. Therefore, an analytical solution, based on PMP,
is proposed for energy management of a parallel HEV.
The optimization variables are: the power split and the
transmission ratio.

This paper is organized as follows. In section 2, the
reference and the analytical models are presented. In
section 3, the resolution of the optimization problem is
proposed in two steps: first, the optimal power split and
then the optimal transmission ratio. In section 4, the
implementation of the analytical solutions is presented.
In section 5, simulation results obtained analytically are
compared to the results obtained numerically. The purpose
of this comparison is to validate the analytical solutions.

2. VEHICLE MODEL

As shown in Fig. 1, the HEV configuration considered is a
parallel HEV which consists of a battery, an electric motor,
and an ICE delivering power to the wheels via a gearbox.
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Fig. 1. Parallel HEV powertrain model

The wheel power Pw , demanded by the driver, is cal-
culated from the vehicle speed set-point. So, the vehicle
speed is considered as an input of the optimization, and is
given by different cycles.

In the following the reference and approximated models of
the different components are presented.

2.1 Reference Models

Engine The engine is modeled by the fuel flow (Q)
consumed by the engine to deliver the mechanical power
Pi.

Q(t) = ṁfuel(Ti(t), ωi(t)) [g/s] (1)

where ωi and Ti are the engine speed and torque. The
mechanical power generated by the engine is expressed by:
Pi = Tiωi [W ] and limited by two functions of ωi:

Pi(ωi(t)) ≤ Pi(t) ≤ Pi(ωi(t)) (2)

Electric Motor (EM) The electric motor model expresses
the electric power produced by the EM which includes the
mechanical power delivered and the losses obtained from
the specific power loss of the EM. So, the electric power
Pe has the following expression:

Pe(t) = Pem(t) + loss(Te(t), ωe(t)) [W ] (3)

with Pem(t) = Te(t)ωe(t) [W ]

The power Pem is limited by two functions of ωe:

P e(ωe(t)) ≤ Pem(t) ≤ P e(ωe(t)) (4)

Battery The battery is modeled as a resistive circuit
(Badin, 2013; Murgovski et al., 2012) and the battery
power is given by:

Pbat(t) = OCV (SoC)ibat(t)[w] (5)

Pbat(t) = Pe(t) +Rbat(SoC)i2bat(t) (6)

The State of Charge (SoC) of the battery is defined as:

˙SoC(t) = − ibat(t)
Qmax

(7)

where Qmax[C] is the maximal battery charge.

2.2 Analytical Models

Some assumptions and approximations were made to make
the models analytical.

Engine The fuel flow Q is modeled by the ”Willans Lines
Model” as described in Rizzoni et al. (1999). Its analytical
model is given by:

Q(Pi) =

{
a1Pi(t) +Q0(t) if Pi ≤ Pi ≤ Plim

a2(Pi(t)− Plim(t)) +Qlim(t) if Plim ≤ Pi ≤ Pi

(8)

where Q0 is the idle fuel consumption.

where the parameters Q0, Plim, Qlim, Pi and Pi are given
as functions of ωi:

Q0(ωi(t)) = q2ωi(t)
2 + q1ωi(t) + q0 (9)

Plim(ωi(t)) = p1ωi(t) + p0 (10)

Qlim(t) = a1Plim(t) +Q0(t) (11)

Pi(ωi(t)) = k1ωi(t) + k0 (12)

Pi(ωi(t)) =
−Q0(t)

a1
(13)

and a1, a2 are assumed constant, where a1 >> a2.

Fig. 2 shows that the approximated engine model is
sufficiently representative of the reference engine model.
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Fig. 2. Validation of the model of Q

EM and the Battery Concerning the electrical part, it is
assumed that:

• The open circuit voltage (OCV ) is constant
• The battery losses are neglected (Rbatibat

2(t) ≈ 0)

Since the OCV is assumed constant, the State of Energy
(SoE) can be used. It is given by:

˙SoE(t) = −OCV ibat(t)
Emax

(14)

where Emax = OCV Qmax[J ] is the maximal battery
energy. The SoE[%] is limited by:

0 ≤ SoE(t) ≤ 100 (15)

The analytical model of the battery power, which has been
validated (Fig. 3), is given by:



Pbat(Pem) =

{
a−(ωe)Pem(t) + b(ωe) if P e ≤ Pem ≤ 0
a+(ωe)Pem(t) + b(ωe) if 0 ≤ Pem ≤ P e

(16)
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Fig. 3. Validation of the analytical model of Pbat

3. OFF-LINE OPTIMIZATION

In this section, the off-line optimization process is pre-
sented (Fig. 4). The outputs of this process are the optimal

Pi (P opt
i ) and the optimal transmission ratio Ri (Ropt

i )

which are calculated analytically. In this approach, P opt
i

is first calculated in steps 1 and 2, and Ropt
i is determined

afterwards in step 3.

Fig. 4. Optimization Process

3.1 Continuous Control (Steps 1 and 2)

The optimization problem to determine P opt
i is formulated

as:

OPA :



min
Pi

J

˙SoE(t) = −Pbat(t)

Emax
Pi + Pem = Pw

Pi ≤ Pi ≤ Pi

P e ≤ Pem ≤ P e

(17)

where

J =

∫ tf

t0

Q(Pi(t))dt (18)

To find the optimal power split, the PMP is used. So,
according to the PMP, minimizing J is equivalent to
minimizing the Hamiltonian function which is calculated
from (16) and (18), as follows:

Hhyb(Pi, Pw, λ) = Q(Pi) + λ(t)Pbat(Pem) (19)

where λ is the Lagrange factor.

The Hamiltonian functionHhyb is the sum of two piecewise

affine functions. So, to find P opt
i , first, we have to calculate

the expression of Hhyb. This is done by considering the
points where the functions Q and Pbat change their slope.
These points are Pi, Plim, Pw and Pi.

The general expression of Hhyb is:

Hhyb(Pi) = A1Pi +A0 + λ(B1(Pw − Pi) + b)

The value of Pi which minimizes Hhyb is the optimum. So,
the minimum of Hhyb depends on the sign of (A1 − λB1)
which depends on λ and Pw. As shown in Fig. 5, if:

• Pi < Plim then A0 = Q0, A1 = a1
• Pi > Plim then A0 = Qlim − a2Plim, A1 = a2
• Pi < Pw then B1 = a+
• Pi > Pw then B1 = a−
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Fig. 5. Determination of the expression of Hhyb

Finally, as shown in Fig. 6, the three possible configura-
tions of Hhyb are: increasing, decreasing or decreasing then

increasing. Therefore, in each case, P opt
i is deduced:

• P opt
i = Pi for increasing form,

• P opt
i = Pi for decreasing form,

• and P opt
i = Plim or Pw for decreasing then increasing

form.
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i according to the direction
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3.2 Discrete Control (Step 3)

The introduction of a discrete variable in the optimization
problem P makes it hybrid from a mathematical point
of view. For this kind of system, PMP can be applied
(Riedinger, 1999). In Riedinger (1999), the author pro-
posed a classification for hybrid dynamic systems (HDS)
according to the nature of their hybridization and a mod-
eling for each type. One of these types is HDS with con-
troled hybridization. This kind of HDS corresponds to the
studied system and its modeling, proposed by Riedinger
(1999); Riedinger et al. (2003), is given in the following.

It is assumed that:

• k ∈ K = {1, 2, ..., N} is the discrete control,
• uk ∈ Uk is the continuous control.

The system dynamics and the cost function are given by:

ẋ = f(x, uk, k, t) =

N∑
k=1

mk(t)fk(x, uk, t) (20)

J =

∫ tf

t0

L(x, uk, k, t) =

∫ tf

t0

mk(t)Lk(x, uk, t) (21)

with mk = 1 when k is the current mode; if it is not,
mk = 0.

By applying the PMP to the global system, the Hamilto-
nian function H is given by:

H(x, uk, k, λ, t) = L(x, uk, k, t) + λf(x, uk, k, t) (22)

and in each mode k, the Hamiltonian function Hk is given
by:

Hk(x, uk, λ, t) = Lk(x, uk, t) + λfk(x, uk, t) (23)

Finally, it was shown in Riedinger (1999) that the optimal
control (k∗, u∗k), which minimizes the function H, verifies:

H(x∗, u∗k, k
∗, λ∗, t) = min

k∈K
( min
uk∈U

Hk(x, uk, λ, t)) (24)

The Optimal Transmission Ratio In step 3 of the process
(Fig. 4), the PMP for HDS is applied in order to calculate
the optimal transmission ratio. For example, if the set
K is equal to {R1, R2}, with ωi(R1) < ωi(R2), the
corresponding Hamiltonian functions are:

HR1
(x, uR1

, λ, t) = LR1
(x, uR1

, t) + λfR1
(x, uR1

, t) (25)

HR2
(x, uR2

, λ, t) = LR2
(x, uR2

, t) + λfR2
(x, uR2

, t) (26)

The optimal transmission ratio is obtained by studying the
sign of the difference

HR1(x∗, u∗R1
, λ∗, t)−HR2(x∗, u∗R2

, λ∗, t) = α(λ)Pw + β(λ)

The expressions of α and β are determined in terms of λ.

Finally, as shown in Fig. 8, when:

• Pw < Pth(λ), HR1
< HR2

then Ropt
i = R1,

• Pw > Pth(λ), HR1
> HR2

then Ropt
i = R2,

• Pw = Pth(λ), HR1 = HR2 . Where Pth(λ) = −α(λ)
β(λ) is

the point of intersection of HR1
with HR2

.

This process could be done for a number of ratios greater
than two.

4. ON-LINE OPTIMIZATION

This section describes how the analytical and numerical so-
lutions are implemented. In both methods, λopt is assumed
constant since the OCV dependence on SoE is neglected.
λopt will be found by dichotomy.

4.1 Analytical Method

As shown in Fig. 7, P opt
i is implemented in the form of a

matrix, the lines are intervals of Pw and the columns are
intervals of λ. Then, at an instant t, the expression of P opt

i
is found by placing Pw(t) and λ(t) with respect to these
intervals.

Regarding Ropt
i , the formula of Pth(λ) should be imple-

mented. At an instant t, Pw(t) is compared to Pth(λ(t))

to determine Ropt
i (Fig. 8). Here, four transmission ratios

are considered: Ri ∈ {R0, R1, R2, R3}. The ratio R0 corre-
sponds to the engine Off, where, L0 = 0 and u0 = 0.
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Fig. 7. Implementation of P opt
i according to the values of

Pw and λ

4.2 Numerical Method

The diagram in Fig. 9 explains the numerical approach
to resolve OPN (27) by applying PMP and using the
reference models. First, at every instant t, the control Pi

is meshed from the minimum Pi(t) to the maximum Pi(t).
Then, the numerical value of Hhyb is calculated using the
reference models of Q and Pbat. Finally, the optimal pair
(P opt

i , Ropt
i ) is the one which corresponds to the minimum

value of Hhyb.
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OPN :



min
Pi,Ri

Hhyb(Pi, Ri, Pw, λ)

˙SoE(t) = −Pbat(t)

Emax
Pi + Pem = Pw

Pi ≤ Pi ≤ Pi

P e ≤ Pem ≤ P e

Ri ∈ {0, R1, R2, R3}

(27)

where Hhyb is calculated from (1) and (6).

Mesh 𝑃i = [𝑃i 𝑡 ∶ ∆𝑃i: 𝑃i 𝑡 ]

𝑅i ∈ {𝑅0, 𝑅1 , 𝑅2, 𝑅3}
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Fig. 9. Implementation of the numerical method

5. RESULTS

In this section, the fuel consumption and SoE trajectory
results of the analytical method are compared to those
of the numerical method in order to establish the perfor-
mances of the analytical method. The fuel consumption
value was obtained by applying the strategies on the
reference model. Then, the robustness of the analytical
solutions relative to the parameters Q0 and Plim is studied.

Table 1 shows that the analytical method has almost the
same fuel consumption as the one found by the numerical
method for all studied cycles. In addition, the averaged
value of the computation time and memory space of the
analytical method are lower than those of the numerical
one.

Fig. 10 and 11 show that both methods provide a similar
SoE trajectory and almost the same optimal control for
the highway and urban cycles.

Cycle Strategy FC CPU Memory
[L/100km] [ms] [Bytes]

ARTEMIS Analytical 4.43 1.55 88
highway Numerical 4.41 17.38 704

ARTEMIS Analytical 3.29 1.41 88
urban Numerical 3.25 8.60 704

Table 1. Fuel consumption, CPU time and
Memory requirement results
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Fig. 10. Comparison of the SoE trajectory obtained by the
numerical method and the analytical method for the
highway cycle (top) and the urban cycle (bottom)
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Fig. 11. A zoom of the optimal controls obtained by the
numerical method and the analytical method for the
ARTEMIS urban cycle

Robustness Analysis

Since the analytical model of Q is less accurate than that
of the EM, the sensitivity evaluation of the analytical
solutions (P opt

i , Ropt
i ) relative to the parameters Q0 and

Plim is studied in the following.

The sensitivity, noted s, is measured by the difference in
fuel consumption as follows:

s[%] = 100× (Q̂−Q) (28)

where Q̂, Q are respectively the fuel consumption corre-
sponding to the control calculated with (Q̂0, P̂lim) and



(Q0, Plim). It should be noted that the perturbation is
inserted only in the strategy not in the model so that the
comparison could be made.

The parameter perturbation is introduced by the factors
αQ0 and αPlim

:

Q̂0 = αQ0 × Q0 and P̂lim = αPlim
× Plim. If α < 1,

the parameter is underestimated, and if α > 1, it is
overestimated.
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Fig. 12. Sensitivity of Q0 for the ARTEMIS highway cycle
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Fig. 13. Sensitivity of Plim for the ARTEMIS highway cycle

Fig. 12 and Fig. 13 show that the sensitivity of the optimal
control is very low for both Q0 and Plim. In fact, an
estimation error of ±50% in Q0 causes an overcost less
than 4%. Regarding Plim, an estimation error of ±30%
causes an overcost less than 20%. This study aims to
determine the tolerance interval of the model’s parameters.

6. CONCLUSION

In this paper, an analytical approach has been presented
and applied to calculate the energy management strategy
for a parallel HEV. The results of the comparison show
that the analytical method, which is based on analytical
models, provides an optimal solution close to the one
given by the numerical method, thereby validating the ap-
proximated models. The implementation of the analytical
solutions is easier and requires less computing time than
the numerical resolution. This encourages their use for
embedded optimal control. Moreover, the results show that
the analytical method is as efficient in the continuous case
as in the discrete case. Finally, the results of the robustness
analysis show that the analytical solutions are only slightly
sensitive to the model parameter variations.

As perspectives, the analytical method will be applied to
other HEV architectures (serial, serial/parallel), and to

more complex configurations (several EM and batteries).
This strategy will be implemented for real-time energy
management. The robustness analysis can be extended to
the parameters of the EM model.
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