
HAL Id: hal-01557052
https://univ-orleans.hal.science/hal-01557052

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Hierarchical Labeling Technique for Interactive
Computation of Watersheds

Kevin Bourgeois, Sébastien Limet, Sophie Robert, Victor Essayan

To cite this version:
Kevin Bourgeois, Sébastien Limet, Sophie Robert, Victor Essayan. An Hierarchical Labeling Tech-
nique for Interactive Computation of Watersheds. High Performance Computing & Simulation, Jul
2017, Gênes, Italy. �hal-01557052�

https://univ-orleans.hal.science/hal-01557052
https://hal.archives-ouvertes.fr


An Hierarchical Labeling Technique for Interactive
Computation of Watersheds

Kevin Bourgeois
Univ.Orléans,

INSA Centre Val de Loire, LIFO EA4022,
Géo-Hyd (Antea Group) Orléans, France
Email: kevin.bourgeois@univ-orleans.fr

Sébastien Limet
Univ.Orléans,

INSA Centre Val de Loire,
LIFO EA4022, Orléans, France

Email: sebastien.limet@univ-orleans.fr

Sophie Robert
Univ.Orléans,

INSA Centre Val de Loire,
LIFO EA4022, Orléans, France

Email: sophie.robert@univ-orleans.fr

Victor Essayan
Géo-Hyd (Antea Group)

Orléans, France
Email: victor.essayan@anteagroup.com

Abstract—The watershed computation is a prevalent task in
the geographical information systems. It is used, among other
purposes, to forecast the pollutant concentration and its impact
on the water quality. The algorithm to compute the watershed can
be hard to parallelize and with the increasingly data growth, the
need for parallel computation increases. In this paper we propose
a new method to parallelize the watershed computation. Our
algorithm is decomposed into two tasks, the parallel watershed
segmentation into a hierarchy that allows in a second task to
retrieve randomly large watersheds at run-time in interactive
time.

I. INTRODUCTION

The hydrology is a branch of the geosciences that is mostly
interested in the water cycle, the water resources and the
environmental watershed sustainability. In many countries,
there is a duty to provide citizens with data on water which is
the role of organizations like the BRGM (French Geological
Survey) in France. Such a duty becomes a challenge with the
progress in measuring devices that made amount of available
data grow dramatically in the last decades. The work presented
in this paper takes place in a project that aims at providing to
all people a web site where it is possible to click on a map
and to get instantly information on this point in particular the
geographical area its drains (such area is called the watershed
of the point). This computation may be very time consuming
especially on big terrains and it is not easy to reach interactive
time required by the targeted application. Indeed, the starting
point of the watershed computation is a digital elevation model
(DEM), i.e. a matrix that represents the terrain and where each
cell contains the average elevation of the surface corresponding
to the cell. From the DEM is computed the direction flow
matrix that indicates for each cell the direction where a drop
of water will flow when it falls on it following the steepest
slope for example. Finally, when the user chooses a point on
the map, its watershed is computed climbing back the flow
directions until the ridgelines are reached. Of course a naive
implementation of this computation would lead to run-times

incompatible with interactive applications even when using
parallel programs.

It is for this reason that we proposed a pre-processing chain
of treatments that produces a set of sub-watersheds between
some point of interests which correspond more or less to
junctions of rivers. Figure I shows the points of interest and
their associated sub-watershed. In this context a sub-watershed
is the area drained by a point of interest that does not go
beyond another point of interest. The idea is that when the user
chooses a point on the map, the system computes at run-time
the sub-watershed of this point up to points of interest. This
area is a small one that can be quickly computed. Then the
global watershed of the point is computed by adding the pre-
computed sub-watersheds of the points of interest that flows
to point chosen by the user. Such computation may be very
fast when using a smart labeling of the sub-watersheds that
encodes the dependencies between the points of interest as
illustrated Figure I. Indeed it can be noticed that if the label
of sub-watershed is the prefix of another sub-watershed, then
the second one flows to the first one.

1

1.0

1.1

1.1.1 1.1.0
1.1.0.1

1.1.0.0

1.0.1

1.0.0

1.0.1.1
1.0.1.0

Points of interestWatershed hierarchy

Fig. 1. The points of interest and the watershed hierarchy associated

The processing chain includes the computation of the di-
rection flow as well as the accumulation flow that compute
for each cell of the terrain how many cells flow to it. The



accumulation flow is used to determine the points of interest.
These two computations are not detailed in this paper but have
been efficiently parallelized using implicit parallel techniques
in [1]. This paper focuses on the computation of the sub-
watersheds coupled to their hierarchical labeling which is the
most time consuming step of the processing chain and its
parallelization is not trivial.

Many methods have been proposed to parallelize the wa-
tershed delineation but, as far as we know none of them
both assign consistent labels related to the hierarchy of the
sub-watersheds and delineate the watersheds themselves (i.e.
assigns the cells of a sub-watershed with the right label).
The task is complex since the labels cannot be assigned
independently by each process which may cause many com-
munications. The parallelization proposed here, spares com-
munications by the use of temporary labels and dependency
graphs. These graphs are exchanged once and are used by
each processor to compute the final labels. Experiments on
big DEMs show that this method is efficient and scalable for
huge datasets.

The rest of the paper is organized as follows. Section II
presents some related work. The labeling method and its par-
allelization are presented Section III. We present and discuss
the results of the parallelization against a naive version of
the algorithm in Section IV. Finally, Section V concludes the
paper and draw some perspectives.

II. RELATED WORK

As the watershed labeling is a very prevalent task in
geosciences and in image processing, many researches tried
to increase the performance in order to be suitable for large
datasets.

Historically, the watershed segmentation appeared in the
GIS domain where topographic maps were used to delineate
the drainage basins in order to forecast how the nutrients, the
sediments, the pollutants are transported outside the basins
and how it affects water quality. The watershed segmentation
in image processing does not serve the same purpose, but both
use the same algorithms by trying to find a dividing lines to
categorize cells or pixels with common properties.

There are several approaches in image processing to find the
watershed. In the flooding methods, the image is considered as
a topographic relief. A water source is placed in each regional
minimum of the terrain, and the water level is progressively
increased and the meeting of two water sources constitutes
an edge of the watershed. A great improvement of this
method was proposed by Wand and Liu [2] in GIS domain
with a method called priority-flood and later improved by R.
Barnes [3] and G. Zhou et al [4].

Another method consists in simulating a rainfall over the
surface. The drops that flow over a point of the terrain will
follow the steepest path, down to the outlet, every points
sharing the same outlet are in the same watershed. J-P.
Thiran [5] proposed a fast rainfall based method that has been
improved by J. De Bock et al. [6] by dividing the watershed
labeling into low-complexity relabeling steps. H. Sun et al. [7]

improved this method thanks to a chain-code that indicates for
each pixel the steepest path.

All the papers cited above are about sequential segmenta-
tion. However the parallelization of this task can be difficult
because of the processing order of the cells implies either a lot
of communications or a strategy to divide the terrain. There are
several successful attempts to parallelize this task. J. Roerdink
and A. Meijster [8] listed several strategies to compute water-
shed in sequential and in parallel. Swiercz and Iwanowski [9]
proposed a parallel version for distributed architectures. They
tried to avoid communications by pre-labeling selected pixels
of bands that separate the non-overlapping tiles distributed
among the threads. This allows each thread to compute its
tile independently. The algorithm proposed by H.-T. Do et
al. [10] is designed to work on distributed architectures. They
proposed to split the terrain into overlapping tiles and to assign
label on each tile independently. The processes synchronized
their tiles in order to create a local dependency graph (LDG)
that indicates when a pixel has a temporary label because the
process has not enough information. The LDGs are sent in
all to all communications to create a global dependency graph
(GDG) to assign the definitive label for each pixel. Finally
R. Barnes proposed a parallel version of the priority-flood
algorithm [11] based on the sequential version proposed by
G. Zhou et al.

Our algorithm is designed to extract a watershed hierarchy
between points of interest. The hierarchy is encoded in the
labels used to identified the different sub-watersheds. This
feature increases the difficulty of the parallelization wrt the
methods cited above since it requires a global coherent label-
ing. The solution we propose uses a rain falling technique to
identify and label points of interest. It uses dependency graphs
to make the labeling coherent among the processes and path
compression techniques to efficiently label all the cells of the
DEM.

III. PARALLEL WATERSHED HIERARCHY

This section provides some definitions and notations used to
formalize the watershed labeling problem and then describes
the parallel algorithm we have implemented.

A. Definitions
The domain associated to a terrain (i.e. the mesh) is denoted
DT and is a subset of N×N. All the data associated are stored
into matrices of domain DT . Therefore, a cell c of the domain
DT is defined as a pair (i, j) and Xc designates the value of
the cell c in the matrix X . Let R be the input matrix (i.e. the
DEM of the terrain) where each cell represents the height of
the terrain. Let Nc be the set representing the neighboring of
a given cell. The neighborhood can be of different size and
shape, for example, a neighborhood can be either a cross (Von
Neumann neighborhood) or a box (Moore neighborhood). To
compute the watershed, we use a Moore neighborhood of size
one (a Tchebychev distance of one). At last, let S be the
function to define the successor of a cell c as follows:

∀c ∈ DT , S(c) = c′ s.t. R(c′) = min
{c′′∈Nc}

R(c′′) (1)



that means that the function S indicates for each cell, a cell
in the neighborhood with the steepest slope. It can be the cell
itself if it is the lowest point. This method is known as the D8
method in the GIS domain. In this paper, we consider that R
is lower complete, i.e. for each cell c ∈ DT , there is one and
only one cell c′ ∈ Nc such that R(c′) = min{c′′∈Nc}R(c′′).

A first labeling L can be defined as follows:

∀c ∈ DT , Lc =

{
Lc′ if ∃c′ ∈ DT , S(c) = c′

c otherwise (2)

The labeling process is recursive. A cell must have the same
label as its successor and when a cell without successor is
reached (i.e. the end of a stream) a label is assigned to it and
carried over to all the upstream cells. This labeling allows to
gather the cells into watersheds that are tight (i.e. no water
can flow from one to another). Moreover, these watersheds
can be numerous with some large ones corresponding to the
main streams and small basins for the cells are close to the
sea for example.

The last preliminary matrix for the hierarchy computation
is the flow accumulation matrix A defined as follows:

∀c ∈ DT , Ac =
∑

{c′|S(c′)=c}

Ac′ (3)

For each cell c Ac depends of how many cells c drains and
with an appropriate threshold, the flow accumulation allows
to extract the streams.

B. Hierarchy

In order to retrieve the watershed of an outlet dynami-
cally chosen by the user, we define a watershed hierarchy
with a special labeling. The labeling method L presented
Section III-A, gives the same label to all the cells with a
common outlet which defines large watersheds that correspond
to those of each main stream. As our goal is to compute
dynamically, the watershed defined by a cell clicked at run-
time, we decompose the large watersheds into sub-watersheds
with a specific numbering to memorize which sub-watershed
flows into another.

This method is based on points of interest. These points are
defined thanks to the function S, the matrix A and a threshold
t as follows:

Definition 1. c is a point of interest if it exists at least two
points c′ and c′′ in the neighborhood Nc s.t.
• either S(c′) = S(c′′) = c and Ac′ ≥ t and Ac′′ ≥ t
• or S(c) = c and Ac ≥ t

In other words, a cell is a point of interest if there is at least
two incoming cells whose accumulation flows are higher than
the threshold (i.e. it is the junction of two rivers) or if the cell is
the outlet of the stream. The set of points of interest is denoted
PoI(S,A, t) and the set of outlets is denoted O(S,A, t). We
consider that the points in PoI(S,A, t) are numbered by a
function ord.

The points of interest allow to divide the terrain into sub-
watersheds. The number and the size of the sub-basins depends
on the threshold t.

The watershed hierarchy is based on the information of
which watershed flows into another. To express this infor-
mation a new labeling is used. The objective is to find in
the label the watershed order. For this purpose the labeling is
based on the concatenation of the interest point labels. This
new labeling called hierarchical labeling and denoted H is
defined as follows:

∀c ∈ DT , Hc =


ord(c) if c ∈ O(S,A, t)
Hc′ .ord(c

′) if S(c) = c′

and c′ ∈ PoI(S,A, t)
Hc′ if S(c) = c′

and c′ 6∈ PoI(S,A, t)
(4)

With this labeling all the cells of a sub-watershed that flows
into another get a label prefixed by the label of the outlet sub-
watershed. Therefore the labeling H describes the hierarchy of
the sub-watersheds and if the watershed of a point c is sought
it is sufficient to find the upstream point of interest p and to
extract from the mesh all the cells which labeling is prefixed
by Hp. The set of cells that have the same label l according
to H is denoted W (l) and is the following

W (l) = {c ∈ DT |Hc = l}

Then the watershed of a cell c of label l contains the union
of all the W (l′) such that l′ = l.l′′ (i.e. l is a prefix of l′).

Algorithm 1 illustrates how the labeling H can be computed.
This algorithm relies on the well known path compression
technique [12] used to compute connected components of
graphs. This technique consists in recursively searching for a
labeled point or an outlet following the successor function S.
Once this point has been found the cells on the path followed
from the initial point are labeled according to Equation 4. The
ord function is simply implemented by a global counter.

Notice, Algorithm 1 does not label some outlets because
of the threshold t. The advantage is to avoid to memorize
very small watersheds which can be numerous. Such tiny
watersheds can computed on-the-fly with a very small cost.

Figure 2 shows an example of labeling of two streams where
the red points are the points of interest. The example shows
clearly that if one wants to retrieve the watershed ending at
the point of interest with the label 1.0, one just needs to query
all the watersheds with a label beginning with 1.0.

As the algorithm is recursive the order in which the cells
are accessed is not predictable. The parallelization is not easy
and a naive implementation that only consists in splitting the
data into equivalent tiles would not be efficient.

C. Parallelization

To be able to tackle large amounts of data in the context of
watershed computation, we focus on distributed architecture.
The parallelization is based on the distribution of the matrices
needed for the computation on different processors. Each
processor p manages a sub domain DTp ⊆ DT . To optimize



Algorithm 1 The labeling algorithm
1: procedure SEQUENTIAL LABELING(DT , H , A, t)
2: n← 0
3: for all c ∈ DT do
4: if Hc is undefined then
5: Hc ← PATH COMP(DT ,H , A, c, t, n)
6: end if
7: end for
8: end procedure

9: function PATH COMP(DT ,H ,A,c,t,n)
10: c′ ← S(c)
11: if c′ 6= None then
12: if c′ is a point of interest then
13: if Hc′ is undefined then
14: h← PATH COMP(DT ,H ,A,c′,t,n)
15: Hc ← h.n; n++
16: else
17: Hc ← Hc′ .n; n++
18: end if
19: else
20: if Hc′ is undefined then
21: Hc ← PATH COMP(DT ,H ,A,c′,t,n)
22: else
23: Hc ← Hc′

24: end if
25: end if
26: else
27: if Ac ≥ t then
28: Hc ← n; n++
29: else
30: Hc ← NO LABEL
31: end if
32: end if
33: return Hc

34: end function

(a) Extracted streams

0
0.0

0.0.0

0.0.1

0.0.0.0

0.0.0.1

0.0.0.0.0

0.0.0.0.1

0.0.0.0.1.0

0.0.0.0.1.1

0.1

0.1.0

0.1.0.0
0.1.0.1

0.1.1

1

1.0

1.0.0

1.1

1.0.1

1.0.1.0

1.0.1.1

(b) Points of interest and labeling

Fig. 2. Example of labeling of two streams

parallel computation, each mesh is divided with overlapping
parts. As illustrated Figure 3 each processor owns additional
cells called ghost cells and denoted by G. Finally, we denote
O ⊂ D the cells which are shared with another processor.

D

Pi processor Pi+1 processor

overlapping data
overlapping data

OG

Fig. 3. Domain definitions for two processors with line bands

P0 P1 P2

0.3 0.5 0.5 0.1 0.2 0.0

1.6 1.7 1.8 1.8 1.8 1.9

1.10 1.7 1.11 1.8 1.12 1.12

2.14 2.13 2.15 2.15 2.16 2.16

↓ ↓ ↓ ↙ ↑

↓ ↑

Fig. 4. First step of the parallel labeling (the p processor number as label
prefix is omitted for reasons of clarity).

The naive method consists in labeling the cells in an iterative
way. At each step the process computes, when it is possible,
the labels of the cells of its local domain and exchanges with
its neighbors the ghost data to propagate the label over other
processes. The number of steps of this method is not known
in advanced and it may involves a lot of communications. It
can be really expensive when the number of processors grows.

Our method uses the similar scheme as the method im-
plemented in Paraflow and described in [10]. However our
algorithm requires to use the labeling H defined Equation 4
which complicates the task. The algorithm is split into three
parts

The first part described Algorithm 2 consists in computing
the cell labels of the local domain when it is possible, and in
defining the secondary cells (line 21). A secondary cell is a
cell whose successor is a ghost cell. For all secondary cells
a temporary label is assigned. Then this label is assigned to
the cell upstream thanks to the recursive algorithm. At last, to
ensure the label uniqueness, all the local labels are prefixed
by the processor number (line 25).

The second part begins with the ghost cell exchanges. Then
a local dependency graph (LDG) is created to associate the
temporary label of a secondary cell to the label of the ghost
cell to which it depends. At this stage, the ghost cell labels
may also be temporary labels. The LDG is described as a
graph whose vertices are the labels and whose edges show
how a temporary label need to be replaced. More precisely
the edge a→ b indicates that the label a is dependent of the



Algorithm 2 The local path compression in the parallel
labeling algorithm

1: function PATH COMP(DTp ,H ,A,c,t,n,SCells)
2: c′ ← S(c)
3: if c′ 6= None then
4: if c′ ∈ DTp then
5: if c′ is a point of interest then
6: if Hc′ is undefined then
7: h← PATH COMP(DTp ,H ,A,c′,t,n)
8: Hc′ .n; n++
9: else

10: Hc ← Hc′ .n; n++
11: end if
12: else
13: if Hc′ is undefined then
14: Hc ←PATH COMP(DTp ,H ,A,c′,t,n)
15: else
16: Hc = Hc′

17: end if
18: end if
19: else
20: Hc ← p.n; n++
21: SCells← SCells ∪ c
22: end if
23: else
24: if Ac ≥ t then
25: Hc ← p.n; n++
26: else
27: Hc ← NO LABEL
28: end if
29: end if
30: return Hc

31: end function

label b (or label a should be label b).
Figure 4 illustrates the end of the first step. The colored cells

are secondary cells on each processor and their corresponding
labels are temporary. Thus the LDGs built by each processor
are the following:

LDGP0
= {0.3→ 1.6, 0.1→ 1.8, 0.2→ 1.8, 0.0→ 1.8}

LDGP1
= {1.7→ 0.5, 1.8→ 2.15}

LDGP2
= {2.13→ 1.7}

The LDG is not enough to finalize the labeling. For example,
the secondary cells of label 0.0, 0.1 and 0.2 on P0 depends
of the 1.8 label of the P1 processor which itself is temporary
and depends on the 2.15 label of the P2 processor.

This is why, the last step consists in computing a Global
Dependency Graph (GDG) to end the labeling. The LDG are
sent thanks to all to all communications of all the processors.
The GDG construction as illustrated Algorithm 3, consists in
reducing a path from a temporary label a to a label b such as
there is no edge of the form x → b to the edge a → b. Each
process constructs its local part of the GDG from the union

of all LDGs in order to finalize the secondary cell labeling.
For the example illustrated Figure 4, the partial GDGs are the
following

GDGP0 = {0.3→ 1.6, 0.1→ 2.15, 0.2→ 2.15, 0→ 15}
GDGP1 = {1.7→ 0.5, 1.8→ 2.15}
GDGP2 = {2.13→ 0.5}

Algorithm 3 The GDG construction and the final labeling
1: procedure FINAL LABELING(H , SCells, LDGs,

GDG)
2: GDG = ∅
3: for all Cell c ∈ SCells do
4: h← Hc

5: x← y s.t. (h→ y) ∈ LDGs
6: while ∃y s.t. (x→ y) ∈ LDGs do
7: x← y
8: end while
9: GDG = GDG ∪ (h→ x)

10: while ∃y s.t. S(y) = c do
11: Hy = x
12: c = y
13: end while
14: end for
15: end procedure

At last, to end the labeling, all the upstream cells of the
secondary cells need to be updated as illustrated Algorithm 3
(line 10).

IV. RESULTS

We used the compiler GCC 6.3.0 with optimization flag
set to -O2 and OpenMPI 1.10.2. All tests have been done on
the Centre de Calcul Scientifique en Région Centre (CCSC).
The cluster runs on the Scientific Linux Release V6.6. It is
composed of 48 nodes where each node hosts 20 CPU’s Intel
Xeon E5-2670 2.5Ghz, 64Gb of memory. The network is an
InfiniBand 40G/s. We used 7 nodes for the tests with 128
processors. Every run has been done 8 times and averaged.
The maximum deviation was less than 2%.

The experiments are based on two datasets, the Asia and
the North America DEMs from the Shuttle Radar Topography
Mission (SRTM3) with a spatial resolution of 3 arc-second
(around 90 meters). It corresponds to two matrices respectively
60001×90001 (around 20GB) 432001×61201 (around 98GB)
of 32-bit integers.

Since we did not find any algorithm equivalent to ours,
it was not possible to compare our results. However we
implemented a naive version of the algorithm. This version
starts the labeling from the outlet of the watershed and assigns
directly a label to a cell by going up the stream. This method
is iterative and at each step a process tries to compute as
much cells as possible. When it finishes, the ghost cells are
exchanged to compute new cells at the next iteration and so
on until all processors have computed all the cells.



2 4 8 16 32 64 128

1

10

100

Processors

Ti
m

e(
s)

Asia optimized
Asia naive

Communication optimized
Communication naive

(a) Asia dataset

4 8 16 32 64 128

10

100

Processors

Ti
m

e(
s)

America optimized
America naive

Communication optimized
Communication naive

(b) North America dataset

Fig. 5. Execution time of the labeling

Nb processors 2 4 8 16 32 64 128
Optimized version 57.07 29.00 14.84 8.02 4.81 2.59 1.26

Naive version 88.09 45.97 23.58 12.27 6.71 3.40 1.75
Gain (%) 35.21 36.92 37.07 34.64 28.32 23.82 28

(a) Asia dataset

Nb processors 4 8 16 32 64 128
Optimized version 284.12 145.12 75.14 37.12 18.3 9.67

Naive version 402.66 213.34 101.06 51.53 27.23 13.76
Gain (%) 29.44 31.98 25.65 27.96 39.76 29.72

(b) North America dataset

Fig. 6. Execution times and gain

The execution times for the Asia dataset are illustrated
Figure 5a for the naive version and our parallelization. The
speed-up is linear for the two versions but the optimized
version is between 25% and 35% more efficient. The data
are distributed per band of lines of the matrix. So according
to the number of processors P0 receives the first band of
lines and P1 the second and so on. Another data partition
could be a classical round robin one. It consists in cutting
the domain in small bands of lines that are distributed in
a round robin way on the processors. For our method this
distribution leads to more communications without a better
load-balancing. Indeed, the number of secondary cells and the
number of LDGs increase with the number of bands. So the
labeling depends more on the GDG whose construction is an
expensive part of our method. Notice that small bands also
penalize the naive version since it increases the number of
communications.

The results depicted Figure 5b show the execution times
over the North America. Notice that the size of the data does
not allow us to perform the test for one and two processors.
These results confirm that the speed-up is linear for the

optimized and the naive version. The Figure 6b shows that
the optimized version is between 25% and 40% better than
the naive version which clearly shows that the number of com-
munications of the naive version is impacts its performance.
Notice that the time of the communications is almost four
time smaller for the optimized version compared to the naive
version.

The threshold t of the Definition 1 affects the number of
sub-watersheds. The previous results were obtained with t set
to 500000. In the case of the Asia dataset, almost 4100 sub-
watersheds were built. If t is set to 50000 the number of
watersheds increases up to 37000. But the execution time are
very similar without relevant differences. Indeed, the execution
time depends on the GDG construction. But if a cell is located
at the border Asia dataset and the execution times are also very
similar for these two thresholds.

The execution time to retrieve a watershed from any point
of the DEM depends on the number of the sub-watersheds.
If the threshold is small, the generated sub-watersheds are
numerous. To build the watershed requested, a lot of sub-
watersheds may be merged but the cost to find the first interest



t hierarchy size result size execution time
500000 4100 522 40ms
50000 37000 5521 60ms

Fig. 7. Example of watershed reconstruction from a clicked point (Asia
dataset)

point is low. If the threshold is high, the time spent to collect
the cells until we reach a point of interest can be longer, but
the time to query the sub-watersheds upstream is very fast. The
Figure 7 illustrates an example for the Asia dataset. With the
threshold t = 50000, 5521 sub-watersheds are merged in 60ms
whereas for the threshold t = 50000 522 sub-watersheds are
required with 40ms to merge them. Depending on the DEM it
is therefore important to choose a threshold which ensures a
good compromise between the size of the sub-watersheds and
their number.

Figure 8 shows an example of the sub-watersheds obtained
with our method (in multicolor) and the watershed retrieves
from a point clicked at run-time (in red). For the sake of
readability we chose a small part of France used in the INSIDE
project.

Fig. 8. Generated sub-watersheds hierarchy (in multicolor) and the resulting
watershed of a point (in red)

V. CONCLUSION

In this paper, we presented a new method to compute
a hierarchy of small sub-watersheds thanks to a labeling
method that keeps trace of the order the water flows through
them. We proposed an optimized parallelization that limits the
communications but also the number of times the DEM is
scanned. We showed its efficiency and good scalability on
large datasets against a naive version.

This work is part of a more general project which aims
at providing to hydrogeologists programming tools that ease
them the use of parallel computers to process large datasets.
In [1], we showed that on very large classes of algorithms
used in this field, we can provide implicit parallel patterns
that allow the user to program in a sequential way and obtain

an efficient parallel program. The algorithm presented in this
paper cannot be easily generalized since the optimizations we
proposed are specific to the problem. The naive version could
be implemented with implicit patterns which would lead to
an overhead of about 25% to 35% compared to our method.
Therefore, in a framework that targets to hide parallelism
to non specialists, there are two solutions for such specific
time consuming computations: either let the user implement a
not optimized version with the available patterns or include
such optimized algorithm as a function of the framework.
Unless the overhead, the first solution allows the user to be
independent of the presence or not of a specific function.
On the other hand, since there are many specific problems
to optimize in any science, the second could lead to a library
containing numerous optimized specific functions which could
be at the end difficult to use. Our framework should find a good
balance between generality of the patterns and efficiency of the
resulting programs.

ACKNOWLEDGMENT

We want to thank the BRGM and the INSIDE project for
their support for this work as well as the Centre de Calcul
Scientifique en région Centre (CCSC) which allowed us to
perform the performance experiments.

REFERENCES

[1] K. Bourgeois, S. Robert, V. Essayan, and S. Limet, “Efficient implicit
parallel patterns for gis,” in International Conference on Computational
Science, 2017, to appear.

[2] L. Wang and H. Liu, “An efficient method for identifying and filling
surface depressions in digital elevation models for hydrologic analysis
and modelling,” International Journal of Geographical Information
Science, vol. 20, no. 2, pp. 193–213, 2006.

[3] R. Barnes, C. Lehman, and D. Mulla, “Priority-Flood: An Optimal
Depression-Filling and Watershed-Labeling Algorithm for Digital Ele-
vation Models,” Computers & Geosciences, vol. 62, pp. 117–127, 2015.

[4] G. Zhou, Z. Sun, and S. Fu, “An efficient variant of the Priority-Flood
algorithm for filling depressions in raster digital elevation models,”
Computers & Geosciences, vol. 90, pp. 87–96, 2016.

[5] J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing al-
gorithm for accurate segmentation of multi-dimensional digital images,”
Signal Processing, vol. 60, no. 1, pp. 1–10, 1997.

[6] J. de Bock, P. de Smet, and W. Philips, “A Fast Sequential Rainfalling
Watershed Segmentation Algorithm,” in Advanced Concepts for Intelli-
gent Vision Systems, 7th International Conference, 2005, pp. 476–482.

[7] H. Sun, J. Yang, and M. Ren, “A fast watershed algorithm based on chain
code and its application in image segmentation,” Pattern Recognition
Letters, vol. 26, no. 9, pp. 1266–1274, 2005.

[8] J. Roerdink and A. Meijster, “The Watershed Transform: Definitions,
Algorithms and Parallelization Strategies,” Fundamenta Informaticae,
vol. 41, no. 1-2, pp. 187–228, 2000.

[9] M. Swiercz and M. Iwanowski, “Fast, Parallel Watershed Algorithm
Based on Path Tracing,” in Computer Vision and Graphics, 2010, pp.
317–324.

[10] H. Do, S. Limet, and E. Melin, “Parallel computing of catchment basins
of rivers in large digital elevation models,” in International Conference
on High Performance, 2010, pp. 39–47.

[11] R. Barnes, “Parallel priority-flood depression filling for trillion cell digi-
tal elevation models on desktops or clusters,” Computers & Geosciences,
vol. 96, pp. 56–68, 2016.

[12] R. E. Tarjan, “Data structure and network algorithms,” SIAM - Society
for Industrial and Applied Mathematics, 1983.


