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Abstract

We consider a damped wave equation on a open subset of R” or a smooth Riemannian manifold with boundary,
with Ventcel boundary conditions, with a linear damping, acting either in the interior or at the boundary. This
equation is a model for a vibrating structure with a layer with higher rigidity of thickness § > 0. By means of
a proper Carleman estimate for second-order elliptic operators near the boundary, we derive a resolvent estimate
for the wave semigroup generator along the imaginary axis, which in turn yields the logarithmic decay rate of the
energy. This stabilization result is obtained uniformly in §.
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1 Introduction, statement of the problem, and main results

1.1 Introduction

We consider a damped wave equation on (£, g), a compact Riemannian manifold with smooth boundary 0Q, with
Ventcel' boundary conditions, and we are concerned here with the stabilization of such an equation. This type
of boundary conditions is characterized by the presence of a second-order tangential operator at the boundary, for
instance the Laplace-Beltrami operator A’ reading 8, u — Agu = 0 (v denotes the outgoing normal unit vector). It
generally arises when considering a domain with an thin boundary layer of high rigidity, after some approximations
are made. The issue of stabilizing such a wave equation has been the subject of several works, for instance
[7,8,9, 25, 10, 23, 14]. Here, we consider a linear damping of the form a(x)d;u, in the interior of the domain, or
b(x)0.u),,, within the Ventcel boundary condition at the boundary, where a and b are non-negative functions with
a non-empty support of Q or dQ, respectively. Stabilization is measured by the decay and the convergence to zero
of a natural energy function for the solution. Since the seminal works of [27, 1], it is known that a stabilization
charaterized by an exponential decay rate for the energy is heavily related to a geometric control condition, GCC
for short. Roughly speaking, every generalized geodesic (travelled at speed one), in the sense of [24], needs to meet
the control region in a finite time (see also [6]). In our case, we do not impose any condition on the localization
of the damping, and we follow the approach of [19, 21, 3] that leads to the proof of a logarithm type decay for the
energy. Setting the damped wave equation in a semigroup form, say %U + AU = 0, such a decay can be obtained
upon deriving of a resolvent estimate for the semigroup generator of the form [|(ioc- Id +A)~!|| < Cexp(Clo) for
o € R, with || > 1. Precise statements, including proper operator norms, are given below. Such a resolvent
estimate can be achieved from Carleman type estimates for a second-order elliptic operator, taking into account
the particular boundary condition used in the definition of the damped wave equation problem. Classical boundary
conditions, e.g. homogeneous Dirichlet, homogeneous Neumann in the case of an inner damping (a nonvanishing),
or Neumann in the case of a boundary damping (b nonvanishing), were treated in the works cited above. The subject
of the present article is to consider Ventcel type condition,

dyu — AL u + bdu = 0

with a parameter § € (0, 1]. In particular, in the result we obtain, the parameter § is allowed to tend to 0" and we
recover the result known for Neumann boundary conditions [21]. We refer to Section 1.3 for precise statements.
A large part of the present work is devoted to the proof of a local Carleman estimate near the boundary for the
following elliptic problem
Agu+c?u=f in Q
{ Oyutyyg — 6AJup,, = g in OQ.

uniformly in o and ¢ for o] > 1 and 6 € (0, 1]. Then, this allows us to derive an interpolation inequality leading to
the resolvent estimate for the semigroup generator. Using the analysis of [5, 2], we can then obtain the logarithm-
decay stabilization result. We also show that a similar result can be obtained dynamical Ventcel type boundary
conditions.

'The name of Alexander Ventcel is often spelled differently, e.g. Wentzell.



The proof of the Carleman estimate relies on microlocal techniques at the boundary in the spirit of [21, 16,
17, 18, 15]. Near the boudary, our analysis is carried out in normal geodesic coordinates, which eases to use
pseudodifferential methods.

The outline of this article is the following. Main results are presented in Section 1.3. In Section 2, we address
the well-posedness issues for the damped wave equations we consider as well as the asymptotic behavior of their
solutions in the limit § — 0*. Section 3 recalls notions around semiclassical calculus and in Section 4 we describe
the local geometry of the problem near the boundary. In preparation for the derivation of the Carleman estimate,
various microlocal regions are introduced in Section 5 and microlocal versions of the estimate are obtained in
Section 6. These estimates are patched together in Section 7 yielding the desired local Carleman estimate near the
boundary. Finally, in Section 8 an interpolation estimate is derived and we achieve the sought resolvent estimate.

Acknowledgements. The author thanks Jérome Le Rousseau and Luc Robbiano for many discussions on this
work.

1.2 Statement of the problem

Let (2, g) be a Riemannian manifold of dimension n with smooth boundary 9€2. For simplicity, Q is assumed to
be connected. The boundary can be seen as a compact Riemannian manifold of dimension n — 1 without boundary
endowed with the induced metric gjsq. In local coordinates, the gradient and the divergence on (€2, g) are given by

=Y 870, diveu= Z dy,(VJdet(g)u)).
J=1

det(g

where g'/ denotes the coefficients of the inverse of the matrix g = (g;;);j, with similar formulae for V = V,,, and

glan @
div; := divy,,. The Laplace-Beltrami operator on (€2, g) then reads

A, = divg Vg

Zaxxg” Vdet(g)d). (1.1)

\det(g)

with a similar formula for A;. We shall denote throughout this paper by v the outgoing unit normal vector to Q
with respect to the Riemannian metric, and 9, the associated normal derivative. In this setting we consider the
following wave equation

Fu—Agu=00nR, xQy, By, — 6AL up,, = 0onR, X 0Q,, (1.2)

which corrresponds to a problem with a static boundary condition of Ventcel type. Dynamic boundary conditions
can also be considered, namely

1
Fu—-Au=00nR, xQ, duy, + 5Ovtti — Alu,, =0onR, x0Q,. (1.3)

In both cases, ¢ is a small parameter, say 0 < § < 1. This kind of boundary conditions may for instance model a
thin layer structure surrounding €, and the positive parameter § plays the role of the measure of the thickness of
this layer (see Appendix A for a derivation of the model).

We now define usual norms and scalar products on Q and 0

(u, ﬁ)Lz(g) = Luﬁdxg, (V, f})LZ(BQ) = fa;: vng'g, (1.4)

where dx, and do are the volume elements associated with the metrics g and gjsq. In local coordinates, we have

= /det(g)dx; ...dx,, and a similar formula for do,. We also introduce the following Sobolev H I scalar

products
T ol

(u, ﬁ)Hl(Q) = (u, ﬁ)[}(g) + (Vgu, Vgﬁ)Lz(Q),( , V)H'(ag) (v V)U(ﬁg) + (Vg v,V, V)Lz(ag)' (1.5)

Throughout this paper, we shall denote by ||.|| a norm acting on Q, and by |.| a norm acting on 9Q.
Forming the scalar product of (1.2) with d,u in space and integrating by parts yield

1d
5 E ) =0, with E(u,1) := (||atu<t>||iz<g)+||vgu<r)||iz(g)+6|V§u<t)m|iz<m)), (1.6)



which corresponds to a conservation of energy E(u, f) of the system.
The purpose of the present article is the study of interior stabilization, namely, the following system

Ou— Agu+adu=00nR, X Qy, By, — 6ALu,, = 0 on R, X 8Q,, (1.7

where a is a bounded function of Q satisfying the condition a > C > 0 on wy;, where w; is a non empty subset of
Q, as well as the problem with damping affecting a subset the boundary

u—Agu=00nR, X Qy,  dyu,, — SAL Uy, + bduy, = 0 on R, X 0Q,, (1.8)

where b € W*(0Q) satisfying b > C > 0 on a non-empty subset wp of Q. Computing the evolution of the
energy as above, we formally obtain respectively

t t
E(u, 1)~ E(u1,0) = - f f aldul,  E(u,0)— E(u,0) = - f f Doy .
0 Q 0 oQ

which shows that, in both cases, the energy is a non-increasing function of time. We shall prove that the localized
damping effect is actually sufficient to ensure that the energy goes to zero at least logarithmically. In [21], in the
case where Q is a ring of R?, the authors proved that such a logarithmic decay rate is in fact optimal in the case of
Neumann boundary conditions.

Below, we shall treat well-posedness and stabilization properties of (1.7) and (1.8) in the same time (Sections
1.3.1and 2.1). In fact, we shall consider slightly more general operators at the boundary without adding technicality
in the analysis. We shall consider the following system

{ (9,214 - Agqu+adu =0 on R, X Q, (1.9)

6vu‘m + 52u‘m + b@,ubﬂ =0 on Rt X 69_,5,

where a and b are as above, but at least one is non identically zero, and X denotes any positive second-order
differential operator on 0Q, that vanishes on constant functions, that is

C c ker(2), (1.10)

and which furthermore is self-adjoint for the duality bracket (., .)y-190) 11 @), Where the chosen pivot space is
L*(69Q) endowed with the inner-product defined by (1.4). Note that the definition of (., .)y-150) 11 (@q) depends on
the metric g. Hence there is some connection between the operator £ and g. In particular £ = —Ag is a possible

choice for X. Observe that H~! is well defined as derivatives of L>(9Q) functions in the distribution sense, since
0Q has no boundary. Thus, the bilinear form

(”\am ”\m)Lz(aQ) + By Uoo ) H-1 (602),H'1 (00 (1.11)

defines an equivalent norm on H'(0Q) to (1.5). Furthermore, we define the energy associated to (1.9)

1
Ey(u,1) = 5 (1021132 ) + IV (D)2 + 6 (Ctt(Disq (B Y11 o3y 1)) (1.12)

The reader should keep in mind that a prototype of such an operator X is —Ag defined in (1.1), and in this case,
the energies E and E; coincide. To treat the existence and uniqueness properties of evolution system (1.9), it is
convenient to recast the problem into a semigroup formalism. Considering the norms appearing in the energy of
solutions given in (1.12), we introduce the natural following spaces

Hs = Vs x L*(Q), 6 € (0,11, where Vs = {u € H'(Q) luga € H'(0Q)},

endowed with the norm
2 2
||u||(V§ = ||u||HI(Q) +0 <2M|,,Qy u‘ag)H—]((’)Q),HI(Q) . (] .1 3)
The space V; together with the norm |||, has a Hilbert space structure. Observe that this norm is equivalent to

1/2 . .
(II.IIiI,(Q) + ‘5"'%1'(59)) . We then define the following norm on # as the cannonical norm

2 _ 2 2
G, V117, = Nullzy, + V172 -



Each space H;s and Vs indexed by 6 is algebraically equal to Hs-; and Vs, respectively. Yet, note that this
identification does not hold topologically as ¢ goes to 0. Next, we define the wave operator

0 -Id
Ay = (_Ag a(x)) (1.14)

of domain D(As) := {(uo, u1) | up € H*(Q), Ugj,, € H*(0Q), u; € Vs, 0y, + 02U, + buyy,, = 0}. The operator
A; depends on ¢ through its domain. In this formalism, system (1.9) reads as an evolution equation

3,U + AsU =0, (1.15)

for U = (u, 0,u). In the case of dynamic boundary conditions, we shall consider the following problem
1 1
Ou—Agu+adu=00nR, xQ,, 0u,, + 500+ Zu+ b, = 0 on R, X 9Q, (1.16)

where a and b are as in (1.9). Arguing as in (1.6), we define the following energy

1
Ea(u1) = 5 (10Ol ) + Vst OlE 0, + 8100t (1) ) + 0 (Ettns ) -1 00 10500

We shall treat system (1.16) as a system of equations coupled through the normal derivative term with a transmis-
sion condition at the boundary

u— Agu+adu =0, Ou,, + 607y + 6%y + bd;y =0, upq = y. 1.17)
We then define the space of energy

K 1= {(uo, 11,30, 1) € H'(Q) x LX(Q) x H'(8Q) X L*(9Q) | o, = Yo

endowed with the norm [|(uo, 1, yo, YD, = ltolZ, + N1l ) + 6250, Y0)r-1a00 1 00) + O11 22 5y Vielding
a Hilbert space structure. We recast system (1.17) into the evolution equation 0,U + BsU = 0, where U =
(u, dsu,y, 0;y), and where By is the operator defined on K

0 -Id 0 0
B A, a 0 0
LR ) 0 -1d o

vy 0 T b

with domain D(B5) := {(uo, 1, y0,y1) € HA(Q) x H'(Q) x HX(0Q) x H'(9) | ttg,,, = yo}. The operator y; denotes
here the trace on 0Q of the normal derivative 0,.

1.3 Main results
1.3.1 Stablization results on the damped wave equations
The main results of this article are the following stabilization properties.

Theorem 1.1. Let k > 1. There exists C > 0 such that for all 0 < § < 1 we have the following energy decay
estimate

C
Eg(u,)'"? £ ———— A5 Uollg,00»
(log(2 + 1))

for all u solutions of (1.9) with initial data Uy = (uy, 0sup).
We also have

Theorem 1.2. Let k > 1. There exists C > 0 such that for all 0 < § < 1 we have the following energy decay
estimate

C
Ey(u,0)'* < ————|IB{Uollz,)»
(log(2 + 1))

for all u solutions of (1.16) with initial data Uy = (ug, 0sup, Yo, 01Y0)-



Note that zero may be an eigenvalue for both operators As and Bs associated with vectors of the form (C, 0)
and (C, 0, C, 0) respectively, and with assumption (1.10), the energies E; and E; are invariant under addition of
constants (see Proposition 2.3 and 2.7).

Observe that the decay rate increases as the regularity of the initial data does. In fact, using semi-group
properties one can show that if we simply have E(u,t) < f(£)E(u,0) with f(f) — 0 as t — +oo then, in fact, the
energy decays exponentially. From [2, 5], it is well known that the stabilization results of Theorem 1.1 and 1.2 can
be reduced to deriving the following resolvent estimate along the imaginary axis.

Theorem 1.3. For all o € R, o # 0, the operators (ioc1d +As) and (io1d +Bjs) are invertible on Hs and K
respectively. Moreover, there exists C>0 such that

ll(io Id +As) " lg4, 94, < Ce V! lo| > 1, (1.18)
(i 1d +Bs) g, -5, < CeV! o] > 1. (1.19)

As D(Ay) is compactly embedded in H;, the spectrum of Ay is countable. In the case of an undamped wave
equation, i.e ¢ = 0 and b = 0, the operator A is antisymmetric for the inner-product of H;, and then its eigenvalues
are purely imaginary. In the case of stabilization (a or b not identically zero), the only eigenvalue on the imaginary
axis is zero. Indeed, let o € R*, o # 0 and consider U = (uy, u;) satisfying (As + io)U = 0. This is equivalent to

uy —ioug =0, —Agup — aioug — octup=0 inQ,

6‘,140\69 + 6Zu0|(,9 + ibO’Mo\{m =0 in 0Q.
Multiplying the second equation by up and integrating by parts over Q yields up = 0 on wjy if considering the
imaginary part on wy, and ug,, = 0 on wg, thus ug satisfies —Agug = a?uy. Thus we can apply Calderén’s unique
continuation theorem if w; # 0, and apply Theorem C.1 given in appendix if wp # 0. The same arguments hold
for the operator Bs. As said above, 0 is an eigenvalue for both operators. To remove this difficulty, we shall work
in quotient spaces as described at the end of Sections 2.1.1 and 2.1.2. In these quotient spaces, we can extend
the estimates of Theorem 1.3 to o € R, and (1.18) and (1.19) ensure that all the eigenvalues are not in a closed

neighborhood of iR of the type {z := x + iy, x > 0, x < e~“Vl} (see for instance [21]). This kind of resolvent
estimate is heavily related to the Carleman estimate stated in the next section.

1.3.2 Carleman estimate at the boundary

We shall prove Carleman estimates for classes of more general operators in the interior and at the boundary. We
thus define the following operators

P = —Ag +c(x).V, +d(x), S =2+ ).V} +d" (%), (1.20)

where ¢ (resp. ¢T) denotes any L™ vector field on Q (resp. dQ), and d (resp d7) any L™ function on Q (resp. Q).
The estimate we prove in this paper concerns the following system

(P-—cPu=fonQ, du+dS —«ko?)u=gondQ, (1.21)

where o is a real number, and « is equal to 0 or 1. The operators (P — 0%) and (S — xo%) will be denoted by P,
and S, respectively. We introduce the parameter « in order to prove a Carleman estimate that allows us to treat
both cases of static and dynamic boundary conditions at the same time. More precisely, k = 0 corresponds to the
static case, and k = 1 to the dynamic case. Note that in (1.21), we add lower order terms in the interior and at the
boundary. Moreover, we consider non-homogeneous equation with f and g as body and surface source terms. To
precisely state the result, we need to recallthe notion of sub-ellipticity. For > 1, we set Py, = e™¥P,e” "¢, where
¢ € C*(R"), and consider p, - its semi-classical principal symbol. We then have the following definition.

Definition 1.4. Let V be a bounded open subset of Q and ¢ € C*(V). We say that ¢ satisfies the sub-ellipticity
condition on 'V if there exists o > 0 such that

1
Per(x.£.7) =0 = — P P} > 0. (1.22)

ol

forall x € v, EeR" ol = 1 and T > 19|o].



We now consider V a bounded open neighborhood of a point of 2. We impose additional conditions on ¢ on
V, namely, _
Vep#0 onV, and [Vigl <vpinfld,el onVNoQ, (1.23)

for a sufficiently small vy > 0. The local Carleman estimate in the neighborhood of the boundary that we shall
prove is stated as following

Theorem 1.5. Let x € dQ and V be an open neighborhood of x in Q. Let ¢ be a weight function satisfying the
conditions (1.22) and (1.23) on V. Then, there exist 1o > 0 and C > 0 such that

3 2 2 2 2
T ||6T¢M||L2(V) + T“eﬂpvgu” 2(V) + T|eﬂp6vu|(')Q|L2(Vnag) < C(”eﬂpf” 2(V)

2 2.5, .3 2 T, 2
+ 718l o) T 7T + Tl upaliayngq, + TI€FV, “IﬁQ|LZ<VnaQ))’ (1.24)
and if in addition, 8,¢(x) < 0, on'V we have the stronger estimate

3 2 2 3 2 T 2
T ”eTtﬂu” Z(V) + T”eﬂpvgu”LZ(‘/) +7T |eﬂpu|6Q|L2(VnaQ) + T|eﬂpvg u\ﬁQle

2 2 2
+ 71e™ 0,10l yngny < C (€7 f17) + 718 aynany) s (129

(VNIQ)

forall0 <6 <1, forall|o| 2 1, for all T > tolo| and for allu € C3(V), f € L2(Q) and g € L2(0Q) satisfying
(1.21).
Observe that the two Carleman estimates are uniform in ¢ > 0. That will allow us to perform an uniform energy

decay estimate with respect to the small parameter ¢ at the boundary. Furthermore, in the singular limit 6 — 0, we
recover the Carleman estimate proved in [20].

Remark 1.6. Note that this estimate is invariant by adding lower order terms in o in the following sense: if we
setL:=P-0+r(x)cand LT :=§ — o2 + r’ (x)o, with r and " two L* functions, then we can write

lle™Lull> < lle™(P — o®)ull;z + Colle™ull,2,

and the second term can be absorbed by the left hand side of the Carleman estimates of Theorem 1.5 by taking T
large. In the same spirit,
€L ul;2 < 1€7(S — o)ulp + Cole™ulz,

and we can absorb the second term by taking 7 sufficiently large. This estimate is also invariant by adding lower
order operators. If (1.24) and (1.25) are true for P = —A,, it is also true for P in the form given in (1.20), by taking
70 large. It will thus be sufficient to derive these estimates keeping only the prinipal part of P.

2  Well-posedness and asymptotic behavior

In this section, we survey the well-posedness properties of the damped wave equation with static boundary condi-
tions (1.7). We also consider the asymptotic behavior if § goes to zero. Indeed, formally taking ¢ equal to zero,
system (1.7) becomes a damped wave equation with Neumann boundary conditions. We shall make precise in
which spaces such convergence can be proven.

2.1 Well-posedness properties

The well-posedness properties can be stated for general operators. We set
0 -1Id
As = (P a )’

with domain D(As) := {(uo, uy) | ug € H*(Q), U, € H?*(0Q), u; € V5(0Q), 8,up + 6Sug + buy = 0}, for P and S
be the operators defined by (1.20). In the same idea, we set

0 -Id 0 0

P a 0 0
Bs:=| 0 0 -1/

yi 0 S b

and observe that D(Bs) = D(8Bs).



2.1.1 The case of static boundary conditions

Proposition 2.1. There exists Ay > 0 such that for all 1 > Ay, for all F € H;s, there exists a unique solution
U = (u,v) € D(As) of (As + A1d)U = F. Moreover, there exists C > 0 such that

2 2 2
+ 8l oy + VB, < CIIFIR,.

2
“u“HZ(Q)
forall 6 € (0,1], and 1 = A.

The proof is given in Apendix B.1. We can now state the existence and uniqueness result for the associated
evolution equation.

Proposition 2.2. Let Uy € D(As). Then, there exists a unique U in C' ([0, +00), Hz)NC([0, +0o0), D(As)) satisfying
the Cauchy problem
U +AsU =0fort>0, U= U,.

where D(As) is endowed with the norm of the graph ||U||2D(ﬂ6) = ||U||(2H6 + ||ﬂ5U||,%{5.

Moreover, we have ||U(t, g, < Ul and 10 U(t, Iy, < I AsUoll;-

Proof. From the previous propositions, As + Ao Id is maximal monotoneous on H;. Then, we can apply the
Lumer-Philips theorem (see for instance [26], Theorem 4.3) to obtain the result. O

We now focus on the case As = As (see (1.14)).

Proposition 2.3. Assume that (1.10) holds. Then
Sp(As) N iR = {0}, 2.1
and the subspace E( formed by the eigenfunctions of As associated with the eigenvalue 0 is
Ey=C'(1,0). (2.2)

Proof. By Proposition 2.1, the spectrum of A is purely discrete. The fact that io-, o # 0 is not an eigenvalue
comes from the discussion below Theorem 1.3. It is clear that O is an eigenvalue, and that C'(1,0) C E,. Let
(1o, u1) € D(As) such that As(up, u1) = 0. We obtain u; = 0, and thus —A,up = 0. By integration by parts we have

2 _
IVguolly2(q) + 6 (Zttopa U0l ) 51902, 11 062) = 05

and we obtain i = C on Q, which shows equality (2.2). O
Actually, if assumption (1.10) @s not satisfied, then O is not an eigenvalue for As. Below, we shall work in
quotient spaces Vs = (Vg/EO and H;s = 7{5/E0, where Ej := {(C,0), C € C}. We set As the operator induced by

the projection in the quotient space. We also set: D(As) := D(As) N H;s. We can endow the space Vs with the
scalar product

(. u)(v = (Veu, Vga)Lz(Q) + 6 (S, ) -1 92y 11 66

which defines a norm on Vs, thanks to the Poincaré inequality. For the sake of simplicity, in the sequel we shall
do the following abuse of notation: we shall drop the dots and continue to write e in place of e, where o is one of
the spaces above.

Remark 2.4. Observe moreover that in the case As = As, Proposition 2.1 holds with Ay = 0 in the above quotient
spaces.

2.1.2 The case of dynamic boundary conditions

We have the counterpart of proposition 2.1 for the dynamic case.

Proposition 2.5. There exists Ay > 0 such that for all 1 > Ay, for all F € K, there exists a unique solution
U = (ug, u1,y0,y1) € D(Bs) of (Bs + A1d)U = F. Moreover, there exists C > 0 such that

2 2 2 2 2
lluollz2 ey + OIV0lz2 a0 + etz oy + V117 50 < ClIF %>
H2(Q) H2(09)) H'(Q) H'(0Q) s

forall 6 € (0,1], and 1 > 2.



The proof is given in Appendix B.2. This leads to the following well-posedness result for the damped wave
equation (1.17) written in a semigroup setting.

Proposition 2.6. Let Uy € D(B;). Then there exists a unique U in C' ([0, +00), Ks5) N C([0, +00), D(By)) satisfying
the Cauchy problem
U+BsU =0, U;=1U

where D(Bs) is endowed with the norm of the graph ”U”%(Bﬁ) = ||U||3<5 + IBsUllx,.
Moreover, we have ||U(t, .)||§<6 < ”UOH;Q and ||0,U(t, .)||§<6 < IIB(onH%(a.
We state the following result about the eigenvalues of the operator Bs.

Proposition 2.7. Assume that (1.10) holds. Then

Sp(Bs) N iR = {0}, 2.3)
and the subspace F formed by the eigenfunctions of Bs associated with the eigenvalue 0 is

Fy=C'(1,0,1,0).

Proof. It is sufficient to repeat the proof of Proposition 2.3. O
We then quotient the space K by Fy, and still denote it K by abuse of notation.

2.2 Asymptotic behavior as 6 goes to zero

In this section, we study the asymptotic behavior as ¢ goes to zero of the solutions u;s of the damped wave system
with static Ventcel boundary condition

O7us — Agis + adus = f5in QXR,  Byg,g — OAL s, + bOius,, = 0in AQX R, (2.4)
(u5(0), Bus(0)) = Ug in Q,

to the solution of the damped wave equation with homogeneous Neumann boundary condition
Ov—Agv+ady=finQ, 9, +bdv,, =0indQ,  (¥(0),57(0)) = V’in Q. (2.5)
Proposition 2.8. Assume f; — f in L*(0, T; L*(Q)) and Ug = VO e H. We then obtain
us — vin L*(0,T; H'(Q) N H'(0, T; L*(Q)),
and we have the estimate at the boundary |V;u5|m|Lz(3Q) =0 ).

The proof is given in Appendix C.1.

3 Notation and semi-classical operators

In the sections below, we shall use the following notation: R" 3 x = (x,x,) € R" ! xR, and R" 3 & = (£,¢,) €
R"~! x R and we shall consider the operators D = —id, and D’ = —i0. For V a neighborhood of a point of the
boundary dQ (resp. a neighborhood of 0 in R"), we set V* = VNQ (resp. V' = VNR"), where R’ is the half-space
{x e R", x, > 0}.

3.1 Semi-classical operators acting on R”

Here we recall some facts on semi-classical pseudo-differential operators with a large parameter 7, say 7 > 79 > 1.
We shall denote by S the space of smooth functions a(x, &, 7) defined on R" xR", with T > 7¢ as a large parameter,
that satisfy the following behavior at infinity: for all multi-indices «, 8 there exists Cy g > 0 such that

070a(x, &,7)| < Cop(® + 1" PP,



for all (x,&’,7) € R" X R" X [1p, +00). For a € 8%, we define pseudo-differential operator of order m, denoted by
A = Op(a):

Au(x) :=

f e a(x, &, DME)dE,  ue SRY).
@yt Jgn

One says that a is the symbol of A. We shall denote ¥ the set of pseudo-differential operators of order m and
denote by o(A) (resp. o(a)) the principal symbol of the operator A (resp. the symbol @) and thus o (D) = £&. We
shall also denote by D7 the space of semi-classical differential operators, i.e the case when the symbol a(x, &, 1) is
a polynomial function of order m in (&, 7). Throughout the article, we shall use the following order function on the
whole phase-space: A, = (2 + [£%)!/%2. We recall here the composition formula of pseudo-differential operators.
Letae S™andb € 8™, m,m’ € R, we have

Op(a) o Op(b) = Op(a#b),
for some a#b € S"*™ , and for all N € N, there exists Ry € S~V such that

1

il

a#b(x,£,7) = Z

lal<N

(9gfa(x, &, 1)0b(x, &, @) + Ry(x, &, 7). 3.1
For a review on symbolic calculus we refer the reader to [12].

3.2 Tangential semi-classical operators

In the section we consider pseudo-differential operators which only acts in the tangential direction x’, with param-
eter x,. We define S7' _ as the set of smooth functions a(x, £, 7) defined for  as a large parameter, say 7 > 79 > 1,
satisfying the following behavior at infinity: for all multi-indices @ € N", 8 € N"~! there exists a constant C, 5 > 0
such that

5§6§/a(x, f’,r)| < Cop(T? + |€/ P10

forall (x,&, ) € RTXR"!x[ry, +00). Fora € 8"

7> we define a tangential pseudo-differential operator B := Op(b)
of order m by

1 )8
Qay ff b g U xa)dy' A
Rr-1xRn-1

As in the previous section, we define W7 as the set of tangential pseudo-differential operators of order m, and
D the set of tangential differential operators of order m. We shall denote the tangential order function by

Bu(x) :=

Arz = (T + |§’|2)1/ 2, and define the following semi-classical Sobolev tangential norms, for fonctions on R or
traces of functions on R” at {x,, = 0}

[t = |OPT(/1?,T)M|L2(R"-')~

We also define the following semi-classical norms on the half space R’}
. = > ID% Op (X"l
k=0

Observe that , if m € N, this semi-classical norm is equivalent to 3’ <, T'“'||D’"""‘u||Lz(R1), uniformly for 7 €
[10, +00). Below, we shall use several times the following trace lemma.

Lemma 3.1. There exists C > 0 such that for allu € S(R"), fort > 1,
luy,, o < CT72lul . (3.2)
The proof is left to the reader.

Remark 3.2. In this paper, we shall use operators whose symbol depends on a additional parameter o, say
a(x, &, T, 0), such that they satisfy

Fea(x,£,7,0)] < Caplo? + 72 +[gP)" P2

However, in the region where T 2 |o|, we have a € SY', and this property will be used several times.
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4 Local setting in the neighborhood of the interface

Here, we consider normal geodesic coordinates x = (x’, x,,) € R*!'xRina neighborhood V of a point of the

boundary. Locally, we have Q = {x, > 0} and dQ = {x, = 0}. We recall that from the remark below Theorem 1.5,
we can consider only the higher order terms in the operator P, since the form of the estimates we want to prove is
insensitive to the addition of low order terms. In such local coordinates, the principal part of operator P takes the
form (and we still denote by P, by abuse of notation)

n—1
P=D}+R(x,D),  R(xD)= ) DiaxDy),
Jk=1

where a; = ay ; and, if we denote by r(x, £’) the homogeneous principal symbol of R,

n—1
€)= ) aj0EE € Rand AC > 0, ¥(x,&) e R x R'™, r(x,&) > . (4.1)
Jik=1

Note that the principal part of the operator P is chosen to be formally self-adjoint. We also denote the homogeneous
principal symbol of P by p(x,€) = £ + r(x,£&). Whenever V is a neighborhood of 0 in R”, we shall denote by

ESO (V") the space of restrictions to Vi i=R'n {x, > 0} of C* functions on R" compactly supported in V. On the
boundary {x, = 0}, the operator S is an elliptic second-order differential operator in the x’-direction. If we denote
by s(x’, &) its homogeneous principal symbol, we have

s(x,&)eRand AC > 0, V(x',&) e R xR, s(x, &) > C|¢'%.

Observe that in these local coordinates, we have d, = —0,,, where 9, denote the outgoing normal derivative associ-
ated with the metric g. In what follows, we shall denote P, := P-o%and S, := S—«ko? forallo € R, and « € {0, 1}.

4.1 Operator conjugaison by a weight function

As is done classically, we introduce the following conjugated operator
Pyo =e"Pye™,

of homogeneous principal symbol p, ., for a smooth function ¢ to be precisely defined below. We denote also S, -
the conjugated boundary operator
S%U_ = eﬂp‘xn:OSO_efﬂp‘xu:O s

of homogeneous principal symbol s, . In what follows, we set: v = e™u, and we thus have e¥P,u = P, ;v and
e S u =8 ,0Vx,=0. We have P = P, + iPy by setting

Pr=g (Pt Pi)e Pi= 5 (P L)

Note that P, and P, are formally self-adjoints. Observing that e D;e™™ = D; + itdy,¢, we have

P, = D; — (10,¢)* — 0> + R(x,D’) — r(x, 7dy¢) = P, — p(x,7d,9), (4.2)

Py = D05, + T05,¢Dy + T Y (D;a;(x)00kp + a;(x)d oDy (4.3)
k=1

= 27(d,, oD, + F(x,dv, D)) mod DY, (4.4)

where 7 denotes the symmetric bilinear form associated with the quadratic form r, #(x, &, 1) = X7,_; a;x(x)&.n. At
the boundary, we also have S, = S, + i, with

SZ = %(Sga,u""szso') Sl = l‘(S“”U—_S:;’O—)’



that are formally self adjoints and of the form
Sy =s(x,D") = s(x',1dve ) — ko>  mod Z)IT’T and S| = 275(x’, dvy, . D) mod Z)IT’T, 4.5)

where § denotes the symmetric bilinear form associated with the quadratic form s. Their principal symbols are
respectively

Pr(X,E,T,0)) = —0% + E 4+ 1(x, &) — THD,, ) — r(x, 7d ), (4.6)
P1(x,€,1) = 27 (0,060 + F(x, dvp, &), 4.7
$(x, &, 1,0) = 5(x,&) = s(xX',1dr, ) - ko2, (4.8)
s1(},E, 1) = 215X, de gy, . €. 4.9)

Note that p, ,(x,&,7) = pa(x, &, 7,0) + ip1(x, & 7). We shall denote the tangential parts of the symbols p, and p;
by
Pr(x. & 1 0) = =07 + r(x, &) = p(x, Td0), (4.10)
p1(x, &, 1) = 27H(x, &, dy ). (4.11)

With this notation, if u satisfies d,u;, _, + 6S o(x’, D')u), _, = ©, then v satisfies
Duvy,, = Kv,, +© 4.12)

where K € 61)% + TZ)%T, with principal symbol

k(€ . 7,0) = 2065(x £, dy) — i (1D, + 05(x', &) = 65(x', 7d v ) — k)
= 6S1(.x/, é:,»T) - i(Taxn‘P + SZ(X'y é:/’ TO—))7 (413)

and © = ie™0, recalling that 3, = -4, .

Under the action of conjugaison by the weight function, the resulting operator P, is not elliptic. In order
to handle the presence of the characteristics set, we shall impose the following condition on the weight function
which ensures the positivity of some commutators.

Definition 4.1. Let V be a bounded open set of R". We say the weight function ¢ € C*(R") satisfies the sub-
ellipticity property in 'V if |dyp| > 0 in 'V and if there exist C > 0 and 1y > 0 such that for|o| > 1 >0

V(x,&) € VX R, VT 2 70l0l, Puo(%,E17) = 0= {ps, p1}(x,&,7) > CL. (4.14)

Here, we state the sub-ellipticity condition in normal geodesic coordinates. However, note that this condition
is geometrically invariant, and thus this definition is equivalent to (1.22) (observe that by the homogeneity of the
Poisson bracket, {p», p1} > 0 implies (4.14), see the end of the proof of Proposition 4.2). The following proposition
provides a construction of a weight function ¢ that yields sub-ellipticity using a classical convexification procedure.
A proof without the parameter o can be found in [16]. With the parameter o, a proof is given in Appendix D.1.

Proposition 4.2. Let V be a bounded open subset of R" and € C*(R") such that |d,| > C > 0 on V.7_‘hen,
there exists 1 > O sufficiently large, such that the function ¢ = eV satisfies the sub-ellipticity condition on 'V for

7 > Clo|, where C is a constant satisfying C > — .
Ainf ¢

Observe that we impose 7 to be larger than o here. This condition appears naturally in the following proof. In
what follows, T will thus be the principal parameter. Inspecting the proof we actually obtain the stronger property:
p2=0= {pr,p1} > CA.

Considering the previous proposition, we shall often write 7 > 7¢|o|, where 79 > 0 is taken sufficiently large,
and we shall use the fact that 7 + o & T on many occasions in what follows.

4.2 Weight function properties

In this section, we first recall the required properties (1.22), (1.23) for the function ¢ to be an admissible weight
function on V, where V is an bounded open neighborhood of 0 in R”. Yet, here we states these conditions in the
normal geodesic coordinates introduced above, and we provide a construction for such a function. The weight
function to be used, ¢ € C*(V), is chosen so as to satisfy the following conditions

12



o [V >C>0;

e For a given vy > 0, we have
05,0l <voinfldyel j=1,...,n-1 (4.15)
v

e ¢ satisfies the sub-ellipticity condition (4.14), on V, which is given in Section 4.1,

The value of v > 0 will be determined in Lemma 5.3 and in Lemma 6.7 and it is meant to be small. With
this parameter, we enforce the weight function to be relatively flat in the tangential directions as compared to its
variations in the normal direction. In the applications we have in mind, we shall use weights of the form e*¥. The
two first conditions are satisfied if

o [Vy|>C>0;

e Fora given vy > 0, we have |0, .¢| < vpinfld ¢ j=1...n—1.
v

If [V¥| > C > 0 then for A sufficiently large, the third condition is satisfied (see Proposition 4.2). Observe that
if ¢ is an admissible weight function fulfilling the above conditions, then its normal derivative cannot be zero,
implying: |0,,¢| 2 C >0on V.

4.3 A boundary quadratic form

Using integrations by parts and symbolic calculus, we derive a first estimate. It exhibits a quadratic form involving
the two traces uj, , and dy,uj, _, at the boundary. This estimate is central in what follows. Actually, we shall
exploit its structure when considering the phase-space region where the operator P, is not elliptic, and use the
sub-ellipticity condition (4.14) in a crucial way. This estimate is now classical and is proved in [20]. A proof with
the parameter o is given in Appendix D.2.

Proposition 4.3. Let V be an open neighborhood of 0 in R" and let ¢ be a weight function satisfying the sub-
ellipticity condition (4.14) in 1_/+, and assume that |0,,¢| > C > 0 on V. Then there exists 7o > 0 and C' > 0 such
that

2 2
C'tvlli ; + TRe B(V) < [|Pyovlly

forallv e ESO(VJF), ol = 1 and T > 1o|o|, where

Bv) = 2(3xngoDnv‘m:0, DnVIX,,:o) + (AIVI,W:O» DnVIx,,fo)

LZ(R”" ) = LZ(R”" )

’
+ (D"v\x,,:m Alv\x,,:o) + (A2v\x,,:o’ V|x,,:0)

LZ(Rufl ) LZ(R”’] ) :
The operators Ay, A’1 and A are differential, and
o A, Al € Z)IT’T and satisfy
ay = 0(Ay) = 0(A) = 2H(x, &', dr); (4.16)
e Ay e Z)%’T and satisfies
ay = 0(Ay) = 20,6 (07 + plx. Tdpp) = r(x.8)). (4.17)

S Microlocal regions and roots properties

Here, we consider the principal symbol of the conjugated operator (see (4.6)-(4.11))

DX, &, 7,0) +ip1(x,&,7)
Po(x, &, 7, 0) + Py (x, &, T) + £ + 2010, @&,
(&n + 110, 0)? + (10, 9)* + Pa(x, &, 7, 0) + ip1 (x, &, 7).

ptp,()'(-x7 1)



We set: m = (10, cp)2+ Pa(x, &, T, 0)+ip1(x, &, 7). Then, we can write p, - as a factorized second-order polynomial
function in the &, variable

Pooc(X, &, &0, 1) = (& + la + i105,9) (&1 — ia + iT0,¢) ,

where @ € C satisfies Re() > 0 and o> = m. We can write

P (X, E.6.71) = (& —,0+) é-p),
with p~ = —it0,,¢ — i and p* = —it0,, ¢ + ic. Observe that there exists C > 0 such that
lo*| < Car,t. (5.1

ﬁl(x’ 6,7 T)z

We set ,u(x,fl,'ﬁo') = ijZ(x’f’,T’O-) + (2‘1’6_’5"(,0)2 .

Note that it is a homogeneous function of degree 2 in the
(¢, 1, 0) variable.
Lemma 5.1. We have the following:
if p(x,&,7,0) < 0, then p* ¢ R and sign(Im(p™)) = sign(Im(p*)) = sign(-d,,¢);
if ux,&,7,0) =0 , then
o ifdy¢ >0, then p* € Rand Im(p~) < O; thus (x,&,p*, 1) € Char(P, )
o ifd, ¢ <0, then p~ € RandIm(p*) > 0; thus (x,&',p~,7) € Char(P, ),
if u(x,&,1,0) >0, then p* ¢ R, Im(p~) < 0 and Im(p*) > 0;

The different root configurations are represented in figure 1. From Lemma 5.2, we have u < 0 implies |£]| < T,
and that u > 0 implies |£’| = 7, and that u = 0 implies 7 < |£'] < 7.
Proof. Forz = a+ib € C, a # 0, we have

Im(z%)?
Re(%) = a* - " (5.2)
Using (5.2) with z = @, observe that
B ~ »  Im(m)? ) ,  Im(a?)? |
u = Re(m) — (10,,¢)" + Crone? Re(@)” — (10y,9)" + 2 07 Re(a?
B ) ) Im(e?)? )
= (Re(e)? - (10,,) )(1 Ty R o ar)” (5.3)

Thus ¢ 2 0if and only if Re @—7]d;,¢| = | Re a|—71d,,¢| Z 0. This allows us to conclude as Im p* = + Re =70, ¢.
O
The sign of u is related to the value of the tangential variables |¢’| with respect to 7.

Lemma 5.2. For 6y > 0 taken sufficiently small, there exists C > 0 such that we have the following:

ifu(x,&,7,0) < 60/1;1_ , then |§'|2 < CTZ,'
if p(x, €', 7,0) 2 =002, then & < |1
Proof. Suppose first that u(x, &', 7,0) < 50/1%. This means

?(x’ é‘:’ ) dx’ ‘)0)2
(0,9

implying for some Cy > 0, and C; > 0, we have Co|¢’|* < 6ol¢’* + C17%. Thus, for 6y < Cp, we have |¢'] < 72

Suppose second that u(x, &', 7,07) > _60/1%,7» meaning

r(x, &) +

< 60/1% + p(x, 7dy) + 0'2,

p(x, 7dep) + 0% > r(x, &) + 61> Tt
" (0,90
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The case where d,,¢ > 0 :

p+
X
p+
Re(&,) * Re(é,) Re(£,)
X o X X
p y P P
O u=0
E:u<0 o crosses the real axis Efru>0
The case where d,,¢ < 0:
Im(&,) Im(¢,) Im(¢&,)
p+
X X
+X p +><
p p
o
Re(¢,) s Re(é) Re(é,)
X
P
_ _ H= .
E:u<0 p~ crosses the real axis Etru>0

Figure 1: Position of the roots of p, - as u varies.

This implies that for some C; > 0, and C3 > 0 we have C,7% + 0 < C3|¢’|? + 6o72. Thus for 6y < C,, we have
T SEP O

In the case 4 = 0, the operator P, is not elliptic, as one of the roots p* or p~ is real. There is a (real)
characteristic set. The ellipticity or the non-ellipticity of P, can thus be expressed through an algebraic condition
on the tangential variables. We introduce the following phase-space regions

& ={( & 10) eV xR xR xR [0l 2 1, 7= tolo] | u(x. &', 7.0) > m A

& = (.m0 e VIXRT xR xR | |o] 2 1, 72 rolo] | w0, &7, 0) <~ )

& ={(x.¢.71,0) e VI xR XR* xR ol 2 1, T2 7olo| | = 2mAF, < p(x, &, 7,0) < 2m A7},

where 17; > 0 will be chosen sufficiently small below (see Proposition 6.5 and Lemma 6.7). These microlocal
regions are sketched in Figure 2. We shall thus cut the tangential phase-space into three pieces to isolate the
different behaviors of the roots of P, .

Lemma 5.3. (Localization of the characteristic sets). Let ¢ be a weight function satisfying the properties of Section
4.2. Then, there exist C > 0, Cy > 0 and 19 > 0 such that for all || > 1 and T > 1p|o| we have

Re 5,0 (X, &,7) = s(x', &) = s(x',tdve), ) —ko? > CA7.  if ux,&,1,0) > —Codj .
In particular, we have the following inclusions:

Char(S ) C Char(Re(S ) C {u < —CO/I%J} N{x, =0} c& Nnix, =0},
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u=0

u<0 u>0
Char(.S o) —2m CharEPw) 2m 4
€< &= €2 "
& 0 &

Figure 2: Representation of the three microlocal regions.

if 0 < < Cy.
Proof. We have, on the one hand
s(x', &) = s(x',1deyy, ) - ko? > C" )P - C"'T2|dxr<p|m:0|2 - ko

> C//|§/|2 _ C’”Vé‘l'z II_lf |6x,,<p|2 _ KO'Z,
v
and on the other hand, from Lemma 5.2, |§’|2 2 Ar,ifpu > —Co/l%’r for Cy > 0 sufficiently small. This yields

s(x', &) = s(x', 1dp@) — ko = C"" (If’l2 +ol+ 7'2) - C"vir* inf |0, ¢l* — ko
2 A7,

for all T > 1¢|o|, by taking vy sufficiently small and 7y sufficiently large. The other statements follow. O

Here, we used that the weight function is chosen sufficiently flat in the tangential directions with respect to the
normal one in a crucial way: it ensure that the two characteristic sets, that of P, and that of S are associated
with two different microlocal regions. We shall derive three microlocal estimates corresponding to the previous
regions determined by the sign of y, and prove an uniform Carleman estimate with respect to the small parameter
0, that appears in the boundary condition in (1.21). In fact, if we only want estimates with a fixed J, say equal to
one, we can prove such an estimate using only two microlocal regions & and E° U E*. This is due to the fact that
the principal symbol of the boundary operator is of order 2 and elliptic in high frequencies. Then, if 6 = 1, only
second orders terms are relevant. Here, because ¢ varies in (0, 1], we have to treat second- and first-order terms.
That is precisely the reason of the apparition of our particular treatment in the zone &*.

Lemma 5.4. Let y € S(%T homogeneous of degree 0, such that supp(y) C E*. Then, yp* € S]T,r and there exists
C > 0 such that | Im(p*)| > CAr; on the support of x.

i < S
as a homogeneous function of degree 0 in the (¢, 7,0) variable. In the region &*, we claim that there exists
a neighborhood U of R- such that m ¢ U. Indeed, consider x,&,1,0) € E" N (VX Ser0=1) Where S .0
denotes the unit sphere in the variable (¢, 7, 07). Suppose that Im(m) = 0. This implies that p;(x,&’,7) = 0 and
thus u(x, &, 1,0) = pa(x,&,7,0). The definition of & yields that p,(x, &, 7,0) > 0 and thus Re(m) > 0. By a
compacity argument we have there exists a constant C > 0 such that Re(m) > C > 0, and then the claim is proved

by homogeneity. This allows us to define . = F (35-), where F is the complex principal square root. Using

Theorem 18.1.10 in [12], we obtain ﬁ € S(}’T in a conic neighborhood of the support of y. Now, we show that
| Im(p*)| = CAr, > 0. We have

Proof. Let us show first yp* € S} .. As 7d,,¢ € S} _, it suffices to prove that ya € S} .. We have y

| Im(p™)| > | Re(@)| = /0y, l. (5.4)

Using (5.3) and observing that on the support of y, we have u > C/l%ﬁ, we obtain Re(a)? — (18,,¢)* 2 /l%’T, and
with (5.4) this concludes the proof.

]

6 Microlocal Carleman estimates

We recall that the operators P, and K are defined in Section 4.1. In each region, we define cut-off functions y
depending on (x,¢’, 7, o), but from Remark 3.2, the parameter o will not be involved in the symbolic calculus.
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6.1 Estimate in &

In this region, we have u > 17y and thus |¢'| 2 7 and both operators P, and S, are elliptic, and this allows us to
estimate v in the interior and at the boundary from a single observation at the boundary. Observe that the estimate
here is of better quality than that in the other zones &~ and &°.

Proposition 6.1. Let V be an open neighborhood of 0 in RY, and ¢ satisfying the conditions of section 4.2, and
x(x, €& ,1,0) € S(%’T be such that supp(y) C E*. Then there exist g > 0 and C > 0 such that

21 Opr QMR + (7 + 8T Opr 0V, ol - + T1Dw Op7 (Vs =0l < C(IIP VI,

2 2 -1 2 -1 2
7D = KW, 5+ W+ 77Dy, ol + 77 ) (6.1)

forall|o| > 1, forall T > tg|o|, forall v e E?(V*), and 6 € (0,1].
Proof. In this microlocal region, we shall apply the Calderén projector method. We shall denote

P,,v=finR., Dy, — Kv,_, =®in{x, = 0},

forv e ESO (V). Let y € S%T as in the statement of the proposition. We set w := Op;(x)v and g := Op;()f.
Hence

wi = Pygw = Opr(0)Ppov + [Py, Opr(0)lv = g + [Py, Opr(0)Iv,
and on {x, = 0} we have
(D = KYwy,,_, =2 wo = [D, — K, Opr()1v,,, + Opr(x)O), > (6.2)
and as [D, — K, Op;(y)] € 6‘}"“ + ‘P(}’T we find
wolo < 0wy, ol1.c + V), lo + [®lo. (6.3)
Observing that the commutator [P, -, Op;(y)] € ¥! and does not depend on o, we obtain

willze < Mgl + [Vll1.e- (6.4)

In what follows, we shall denote by w the extension of w by 0 on {x, < 0}. We thus obtain the following
equality on the whole R":

Pyow = w, = iy1i(W)dx,=0 = YoW)S, _o + 270, 0¥0(W)dx,=0 (6.5)

where yo(w) = Wiy, =0, Y1(W) = (DyW)}x,=0, and ¢ is the Dirac measure. Recalling that p* and p~ are the two complex
roots of the principal symbol p,  viewed as a polynomial in the variable &, (with Imp* > 0 and Imp~ < 0), we
find -2itd,, ¢ = p*(x,&,7,0) + p~(x, &, 7,0). With this relation, (6.5) reads

Poow =w, + Wy, =0 + W15;”=0, (6.6)
where
Wi=-yw),  Wo=i(Op" +p )yow)—yi(w)), (6.7)
Let Up and U be two conic neighborhoods of supp(y) in (VNR’}) X R ! xR* xR such that 71 C Up and 70 c &t
We also define, for 79 > O:

Vo ={(x, &) lxe VT, ol 2 1, 7> 1olo, 1€l = Col(€, DI},

Vi={éno)lxe Vi ol 2 1,1 2 1lol, &l > CiIE, DI,

for 0 < C; < Cj chosen sufficiently large. Note that V and V; are conic in (£, 7,0). Let y(x,&,7,0) € 32 (see
Remark 3.2), homogeneous of degree 0, be such that y is equal to 1 on the conic set (U; X R) U Vj, and is equal to
0 outside (Up x R) U V;. Note that it is possible since (U1 X R) U Vo) N Sy r0y=1 € (Up X R) U V1) N S r.oi=15
where Sy¢1,0)-1 denotes the unit sphere on R” X R, x R. The microlocal neighborhoods are represented in Figure
3.
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Figure 3: Representation of the different conic neighborhoods.

Observe moreover that on supp(y), we have p,, # 0. Indeed, on the one hand it is true on U; X R since it is
true on & X R, and on the other hand it is true on V; since p,, = 0 is equivalent to &, = p* or &, = p~, and implies
from (5.1), that there exists a constant C > 0 such that |£,| < CAr,, which can be avoided i n Vi, for C; chosen
sufficiently large. Thus, we can construct a parametrix Ey = Op(e) € ¥;2, N € N, such that

N

-
e= ej, ey= , e e¥; J

X
j=0 p (214

with e; homogeneous of dergree —2 — j and satisfying EyPy» = Op({) + Ry. where Ry € ¥;V. From (6.6) we
find
w=Ey (Wlé;,,:o + Wo(sxrl:()) + g1, (6.8)

where g; = Ey(w,) + (Id — Op({)) w — Ryw. As in {x, > 0} we have w = Op(y)v, we observe that supp(1 — ¢) N
(supp(x) X R) = 0, and we shall make use of the following lemma of [12], Theorem 18.1.35, which proof can be
adapted to the semi-classical setting we consider here.

Lemma 6.2. Let ar,(x,&,1,0) € S’}”T and b,y (x,é,71,0) € ST’ and assume that for some 6 > 0 we have
b (x,&,7,0) = 0 if6&al > 1 and (€', 7)| < 8|4l If moreover, (supp(arm X R)) N supp(b) = 0, then

Op(arm) o Opbw) € (| W™, and  Op(bw) o Opy(arm) € [ ) ¥ M.
MeN MeN

With Lemma 6.2 we find (Id — Op(¥)) o Op(y) € ﬂ Y- which yields:
M

llg1ll2z < IVlliz + lIgllo,z- (6.9)
We have
Ey (W18, o+ Woby,) = ToWo + T1 Wy
1 i(xX —v).& , ’ ’ /

TiW := Opr(t)(x)W = ——— f ST (3, E T, )WY )Y dE (6.10)

1 I i
1= 5= f e (g, e(x, €, 7, 0)dE,.
’ 2 R

Note that from (5.1), e(x,&,7,0) S /1;2 for all ¢, € C satistying |&,| > RAr., with R sufficiently large. Then ¢,
defines an absolutely convergent integral, but #; has to be taken in the oscillatory integral sense, and

1 .
H=—0, f ete(x, &, T, 0)dé| (6.11)
27T R

n=Xn

where the derivative is taken in the distribution sense. As for |&,| > Cidr., ¥ = 1, the symbol e(x,&,7,0) is
holomorphic in the variable &,, we can thus change the contour of integration:

fo ene(x, £, T, 0)dé,, (6.12)
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where 8 = {§, € R| &, € [-RA7 ., RAr 1} U {€, € C, |&| = RAr,, Imé&, > 0}, with R > O chosen sufficiently large
to have p* in the complex domain delimited by 3 (such a constant R exists since p* € S]T’T). From (6.11), we can

also define: ;

= — | e™ig,e(x, €, 7, 0)dé,. (6.13)
271' ﬁ

1

For a review of oscillatory integrals, the reader may refer to [11, Section 7.8]. Observe that Op(z;)(x,) is a
x,-family of pseudo-differential operators acting on R"~!. In fact, from (6.12) and (6.13) we have

< Chapandpy ™M =01 (6.14)

[ qa) qaa
&, 9% 93

Eow let U, and U3 be two conic neighborhoods of supp(y) in (V N R%}) x R x R* x R such that 53 c U, and
U, c Uy, and we choose y(x,¢&',7,0) € S%T such that y; = 1 on U, and y; = 0 outside Us (see figure 3). In
addition, we set s; = y1t; and g» = Op;((1 — x1)10)(x,) Wo + Op7((1 — x1)t1)(x,) W1 which yields

w = Op(s0)(x) Wo + Op(s1)(x,) W, + g3, (6.15)

where g3 = g1 + g». By tangential symbolic calculus (the normal variable &, is not involved in the calculus), as
supp(1 — x1) N supp(y) = 0, using (6.14), the trace formula (3.2), we obtain

10p7 (A5 D%, golloe < IWllie + 77 Iy Wlor (6.16)
forall/ € R,I" € N. This allows us to estimate gs:

llgsllzr < llglloe + Ve + 7 i Wlor. (6.17)

We now estimate s;. The symbol e(x, &, &,, 7, o) is holomorphic in &, on the support of x|, we then can change
the contour of integration in the complex plane

sj = xi(x, &, 1,0) f eix’l"f”e(x, &, U)(ifn)jdfn j=0,1 (6.18)
271' Bo

where Sy is a direct contour surrounding p* in the region where Imé&, > coA} .» for some ¢p > 0. (note that it is
possible from Section 5). By the residue formula, we have

- . +)J
ey = Al (’i_) Xi +mj, (6.19)
pt—p
with m; € S/, With (6.18), we can estimate:
D, 845 855 < Crayare™ @ V7(€'| + )7l j= 0,1,

1+j+1
sT

We thus obtain eCO""TDLn s; is bounded in S, uniformly in x,, > 0. This yields

107 (A70) Op (s Y)Wz gy < € f |Opr(sHWli (x)dx,

x,>0

<C f €700 Op (s )WI] L (xn)dx,
x,>0

< Cle'irf e—2coxnrdxn
x,>0
<cr\wil (6.20)

JT

and

1D, Op7 (s i) Willfaen, < € f D, Op(s YWl (xn)dx,

x,>0
<C f e—Zcox,zT|ecox;ern OpT(Sj)Wj%(xn)dxn
x,>0
<o, [ eoas,
’ X,>0

< Cr W3, (6.21)
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Using (6.15), (6.17), (6.20) and (6.21), we obtain

-1 -1/2 -1/2 -2
Wil - < 7 Ngsllr + 7 2IWili - + 72 Wolo + 772D

-1 - “12 “12 -
St gllo + 77 IVl + 7AW + 7 Wolor + 72y (02 (6.22)

It remains to determine the two traces W, et W;. Taking the trace x,, = 0" in (6.15) and using the definition of W,
and W in (6.7):
Yo(w) = Opr(@)yo(w) + Opr(b)y1(w) + ¥0(g3), (6.23)

with a € S(},T, of principal symbol o(a) = —y; pf’%p_lxnzo and b € S;!, of principal symbol o(b) = pf(_‘p_ |x,0 (see

(6.19)). Here, Op;(a) and Op,(b) are the so-called Calderén projectors. Moreover, using again the trace formula
(3.2), the remainder y((g3) satisfies

-1/2 -1/2 -1/2 -3/2
og)li - < 7 lgslloe s 7 2lIgllos + 77 PIVI e + 773 2Dyv, losr- (6.24)

The principal symbol of b satisfies |o7(b)| > C/l},lT in supp(y1). Let ¥ (', &', 7,0) € S(}YT satisfy the same hypothesis
than yi, and such that y; = 1 on the support of ¥. We can thus construct a parametrix, of symbol denoted by
I € SIT’T, such that

Op7(11) Opy(b) = Opy(¥) + R, ReS.™.

Moreover the principal symbol of /; is given by (o — p~). We now apply this parametrix to (6.23), and we find

Op;(11) Opy(1 — a)yyo(w) = y1(w) + ga, (6.25)

where g4 = S1y1(v) + Soyo(v) + Opr(l1)yo(g3), with So, S € S};‘_’. Here we used

Op;(0)y1(w) = yi(w) = Opy(1 = P)y1(w)
=y1(w) = Opy(1 = Y)D, Op(x)v,, -,
=y1(w) = Op7(1 = 1) OP(x)y,, - Duvi,,.o = OP7(1 = 1) ([Dn, Opr OO,

and Opy(1 = ¥) © Op(x)),,., € S;7, and Opr(1 — )[Dy, Opr (X)), € Sy - From (6.24), we have the following
estimate on g4

lgalor < 1S1Y1Mlor + IS ovoWlor + lyo(gs)li -
-1/2 -2 -N -3/2
ST lgllos + 7 VI + Cat™ lvoWlor + 77 lyi(Wlor- (6.26)

for T sufficiently large and N arbitrary. We can thus estimate the Neumann trace from the Dirichlet trace

lyiWlor < lYow)lhr + 1galo.r (6.27)

Now we use the relation (6.2) between the two traces at the boundary, that is, y;(w) = Kyo(w) + wp. From (6.25),
we have

Op;(l1) o Opy(1 — ag)yo(w) — Kyo(w) = wo + g4. (6.28)

(6.28) reads
Hyo(w) = wo + g4, (6.29)

where H = Op;(l;(1 —a)) — K mod ‘I’%T and the principal symbol of H in the region where jy is equal to one is
given by
h=i6s(x',&) - 6s(x', tdy ) — 6k + 70y, ) — 265(x’, &, 1d ) + p*.

In order to produce an estimate that is uniform in 9, and handle properly the calculus with the large parameter 7, we
write ¢ as the inverse of a large parameter 6 = } r > 1 and we introduce a new symbolic calculus. We define the
order function M? = /@T + rdr ., associated with the usual semi-classical metric on the cotangent bundle 7*R"~!:

g = |dx'|? + 'f’j—r The following lemma state that symbols can be defined with this order function, viewing the

semi-classical calculus in the general Weyl-Hormander calculus [12, Section 18.4-6] and [22].

Lemma 6.3. The order function M? is admissible with respect to the metric g, i.e is slowly varying and temperate.
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A proof can be found in [15], Lemma 4.7, in the semi-classical small parameter setting. Actually, any order
function defined by a linear combination of powers of Ar ; is admissible with respect to the metric g. In this symbol
classes, we have rh € S(M?, g). The aim is now to construct a parametrix of 71. We have

rh=i(s(x', &) — s(x', 1dy) — ko) + irtdy,o — 25(x', &, dyp) + rp*.

Taking the imaginary part, Im(rh) = s(x’, &) — s(x',7dy¢) — ko + r1d,, ¢ + rIm(p*), and remarking that from
Lemma 5.3, we have Re(sy ) = s(x', &) — s(x', 7dy ) — ko? 2 /l%T, and that from Lemma 5.4 rIm(p™) > r/llTyT,
we thus obtain |rh| = Imrh > /1%,7 +rdr, = M2,

Then rh is an elliptic symbol in the class S(M?2, g), this allows us to construct a parametrix L € S(M~2, g)
satisfying Op,(L)rH = Op(yr) + R, with Ry € 8§77, for some y, € S%T equal to 1 in a neighborhood of y
and such that y equal to 1 in a neighborhood of y;. Applying this parametrix to (6.29), we obtain

Yow) = rOpr(L)(wo + g4) = Rryo(w) + (1 = Op(x1)) Op(x),,,)y0(v) (6.30)
Yet, we use the following lemma

Lemma 6.4. Forall u € (R we have

r

|Op7(rdz.s) Opr(L)ulor < | Opy( Julo. (6.31)

/lT,T +r

Proof. There exists i € .Z(R*!) such that u = OpT(@)ﬁ and it is given by Op(s=—=)u. As rdr, €

Ar+r
S(rdrz,8), L e S(M2, g)and Ar +r € S(Ar. + r, g) we have r/lT,T#L#@ € 8(1, g) by Theorem 18.5.4 in [12]
(stated for the Weyl quantization). Then applying Theorem 18.6.3 in [12], we obtain

/lT,‘r +r

| Op7(rAz.) Opr(L) Opy( Yo, < litlo,rs

r

that is precisely the result. O
Then using this lemma

| Op, () Op (L) + gl < [rOpy (A, + 1) (v + g,
r
s — .
S o wot galos (6.32)
and, with (6.3) and (6.26)
o + galor < 7 2llgllo.c + 72Vl = + 7 yoMlie + oMo + Bl + 7 lyi(Wlo.z (6.33)

for 7 sufficiently large. Observe that in (6.30), (1 — Op;(x1)) Opr(x) € S}f’: and R; € S;f’: and thus, using (6.30),
(6.32) and (6.33), we obtain

1/2
r+7t -
7 2lole S lgllo + M- + ——loWlie + 7 oMlor + 7210l + T2 Mo (6.34)

From (6.22), and using (6.7) we have

wlli = S gl + IVl + 72 oW + 72y Wloe + T i Wlo - (6.35)

Injecting estimates (6.27) and (6.34) in (6.22) yields

1/2
T/ (T +7)
Tl + ————loWlie + T2l Wlo < lgllo-
+Wlle + 77 2l 0o + 7218l + 77 Plyol 7, (6.36)
by taking 7y sufficiently large. Writing § = % ends the proof. O
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6.2 Estimate in &°

We shall derive an estimate in the region where P, is not elliptic. This is precisely the region where there is a
loss of a half derivative. However, the operator at the boundary S - is elliptic here, this allow us to estimate the
two traces from a single observation at the boundary.

Proposition 6.5. Let V be an open neighborhood of 0 in RY, and let vo > 0, ;1 > 0 be chosen sufficiently small.
Let ¢ be a weight function satisfying the conditions of Section 4.2 in 'V, and yo(x,& ,7,0) € 8(7). be such that
supp(y) C E°. Assume moreover that d,,¢ > C’ > 0. Then, there exist 1o > 0 and C > 0 such that

| Opr(xo)VII; ; + 6771 OP7(x0)Vix,=0l3 » + T1 OP7(x0)Vix,=0l1 + + TID» OP(xoIVy,, olo -

2 2 2 2 2 2
< C(IIPpoVIG , + M + 6%7lvy, L [F -+ vy, + 7108 ). (6.37)

=0ll,7

forall|o| = 1, for all T > 1olo|, for all u € E?(V*) and § € (0, 1].

Remark 6.6. Observe that E° depends on n; and on ¢ and this is precisely the region where theses parameters
will be fixed (see Lemma 6.7). Observe also the critical power of T in the right hand side of the estimate in front
of the norm |v|| r. This term will not be absorbed directly when we will try to patch the three different estimates.
However, this critical term vanishes in the singular limit 6 = 0.

Proof. We set w = Op;(xo)v. We recall that yo(w) = w|, _, and y1(w) = D,w, _,. Using Proposition 4.3, we

have
Wi} . + TRe Bw) < [Py owli; (6.38)
where B is the following quadratic form on the boundary:
B(f) = 205,091 1) + (A1v0(H). v1(H) + (1) Aiyo(H) + (Aave(f) Y0()), (6.39)

and (., .) denotes the scalar product of L>(R"™"), and the differential operators A, A} and A; are defined by (4.16)
and (4.17). Arguing in the same way as at the beginning of the proof of the estimate in & in Proposition 6.1, and
using (4.12), we have

Y1(w) = (Opr(x0)Dav),, o + ([0P7r(x0): DulV)y,, o = Opr(x0)(Kv,, , + @) + ([Opr(x0), Dulv)y,,, = Kyo(w) + G1.
with estimate of the remainder term

IGilor < 8lyoWlie + [yo(Wlo + [Blo, (6.40)
as K € 607 .+ 1D (see (4.13)). It follows that

Bw) = (20, 9Ky0(w), Kyo(w)) + 4 Re (5, 0Ky0(w), G1) + (0.,6G1, G1 ) + (Aryo(w), Kyo(w))
+ (Kyo(w), A yow) + (Aryow), G1) + (G1, Alyow)) + (A2y0(w), yo(w)).  (6.41)

By the Cauchy-Schwarz inequality, for the terms involving G, we have

[4Re (0., 0K 70w, G1) + (02,G1, Gr ) + (Ar7o(w), G1) + (Gr, Af yo(w))|
< IKyoW)lo+IG1lox + oW #IGilor +1G1lG .. (6.42)

By symbolic calculus, we can write the “principal” terms of (6.41) in the following way

2(05,0Kyo(w). Kyo(w)) + (A1yo(w), Kyow)) + (Kw, A5 yo(w)) + (A2y0(w), yo(w))
= ((6°By + 6B3 + Bo)yow), yo(w)),  (6.43)
where the principal symbols of B4, B3 and B, are respectively
by = 205,91, 4l5p0l” € S7.1s
b3 = 4T(3x,lgo‘x’l:0)2sz(x, &.r0)+451(xE DX, x, = 0,8 ,dveg, ) € S;,T,
by =2 (6xn<p372 + 205, 0(—r(x, &) + p(x, 7dep) + 0'2)) € S%’T.

L=

Now we state positivity result of these symbols.
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Lemma 6.7. There exists C > 0, 1 > 0, satisfying g, < Co, independent of o, T and 6 such that
b, &, 1,0)2CA ., j=2,3,4, (6.44)

for all (x,&,7,0) satisfying —2m 7> < u(x,&,7,0) < 2172, where Cy is the constant given in the second part of
Proposition 5.3.

Proof of Lemma 6.7. The positivity of the symbol b4 comes precisely from the fact that the boundary operator
S 4o 1s elliptic in this region (see Lemma 5.3). Let us prove now the positivity of b,. Let (x', x, = 0,&,7,0) € &°,
i.e be such that —2n1/l§’r <-u< 2’71/1%,7' In particular, we have

_2’71/@'; <o? + p(x',x, = 0,7dpe) — r(x', x, = 0,&),

and thus
by > 20,,9°7* — 41105, 017 .. (6.45)

Observe that as (x',x, = 0,&,71,0) € &Y, there exists C > 0 such that /ﬁﬁ < Ct? (see Lemma 5.2) for m
sufficiently small. In addition, if 77; is chosen sufficiently small, from (6.45) we have the positivity of b;.
Let us finally prove the positivity of b3. From Lemma 5.3, we have for n; sufficiently small

SZ(-x,’ f’?T, O') = s(x', f’) - S(x/ade"P) - Ko—z Z /1%‘,7--

Moreover,
As51(x, &, DF(X, x, = 0,&,dp)] < TlE Plde ol < vyl P05, ¢l (6.46)

since we have (4.15), and again for vy sufficiently small, we obtain b3 > T/l%-_r and using again that A7, < 7 in the

region &°, we conclude the proof. O
We can now apply the microlocal Garding inequality in (6.43), and taking 7 sufficiently large we obtain, for an
arbitrary N € N

Bw) > CE oWl + SlyoW)3 2.0 + oWIT ;)
= C' (IKyoWlo<lGrlox + oW1 £IGlor +IG113 ) = CulyoWP . (6.47)
By the Young inequality, the right hand side of (6.47) reads
IKyoWo+lG1lox + oWl1elGilor + G115 . < 8" (8 oW+ + oG- + o) + 7' IGilG .. (6.48)
for all 6’ > 0. From (6.38), (6.47) and (6.48), we obtain
tlwilf . + 7 (o), + o)EE ;) S IPowlis - + TG, + Cythyo ()P

Using the estimate of |G|y - in (6.40) we obtain the sought result. O

6.3 Estimate in &

In this region, we have p < —7; implying |¢’| < 7, and the operator at the boundary S, - is not elliptic. However, in
the case where d,,¢ > 0, the two roots of p, . are of negative imaginary parts, and we can estimate the two traces
at the boundary with no observation term.

Proposition 6.8. Let V be an open neighborhood of 0 in RY, and ¢ be a weight function satisfying the conditions
of Section 4.2inV, and y(x,&',1,0) € 8(7). be such that supp(y) C & . Assume moreover that 0,,¢ > C' >0on V.
Then, there exist tg > 0 and C > 0 such that

107 (IVIB. + 71 Op7 (Vi =013 - + 71D O (X)L, 4[5 - < C (1P VI, + IV )

forall |o| = 1, forall T > 1olo|, u € EOO(V”) andé € (0, 1].
0
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Proof. We follow the proof of the microlocal estimate in the &* region to (6.12) and (6.13). We remark that
the integral along the contour £ is identically 0, because the integrand is holomorphic and the two poles have a
non-positive imaginary part. We then have

w=Ey(Pyow) + g1, (6.49)

where g; is a remainder coming from microlocalisations. We recall that it can be estimated by (6.9). Thus, (6.49)
yields
Wll2.r S 1Pyovllzz + VI -

Taking the yy-trace on {x, = 0} in (6.49), and thanks to the trace inequality (3.2)
TPl S IPeovllzz + Vil e,

and finally taking the y,-trace
2Dawlo < 1Pgovllze + IVl -

Patching these three estimates, we obtain the sought result. O

7 Proof of the local Carleman estimates

7.1 A local Carleman estimate from the interior up to the boundary

From the three microlocal estimates of the previous section, we shall derive a local Carleman estimate with obser-
vation from the interior, that is, with the condition d,,¢ > 0. With this sign condition, from Propositions 6.1, 6.5
and 6.8, we recall that we have the three following estimates:

| Op7 (-l + 7721 Opr (v, o1 + 721D, Op7(x-)vy, L lor < I1Pgovllor + IVl (7.1)

2| Op (xo)Vllir + 677 Opy(xo)vis,=olo.e + 72 (10P7 (x0)Vy, o 1r + 1D Op7 (x0)V,, s losr)

1/2 1/2 1/2
S P ovllos + IVlle + 6772wy lie + 72, lor + 7280 (7.2)

Tl1Opr Qi + (712 + 6T Opr(x W, olie + 721Dy Op7 (X)W, olo.r
< ||Ptp,()'v||0,T + ”V”l,r + Tl/2|®|0,r + T_l/z(lv\x”:oh,‘r + |Dnv\x”:0|0,r)» (73)
where the cut-off functions y,, y_ and y are respectively supported in &, &~ and E°, and for 17; chosen sufficiently

small. We recall that P, , and ® are defined in Section 4.1. We shall denote respectively equalities (7.1), (7.2) and
(7.3) by

LHS _(v) SRHS _(v), LHSo(v) <RHSo(v), LHS.(v) <RHS.(v). (7.4)

Due to the critical term 67'/2[v|, —o|; - on the right hand side of (7.2) and (7.4), we cannot patch directly these
estimates and absorb some of the terms on the right hand side by other terms on the left hand side by chosen pa-
rameters approprietely. This is the reason for the introduction of an additionnal small parameter & > 0, independent
of ¢, T and 0. Now, we take a partition of unity: y_ + yo + x+ = 1 satisfying x4, y—, xo € S%T and moreover

supp(x+) €&, supp(xo) € &',  supp(y-) C & .

For the construction of y,, y- and o, take for instance ¢y € C7(R), such that {o = 1 on [-n1,m1], supp({p) C
(—2m1,2n;) and set

u

AT)’ X- =1 = x0),  x+ = Lo+ (1 = x0).
Tt

Xo = &o(

Observe that this construction yields indeed tangential symbols in S%T by adapting [12, Theorem 18.1.10].
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We then write, forO < e < 1
LHS _(v)+&eLHSo(v) + LHS . (v) S LHS _(v) + eERHS o(v) + LHS . (v) (7.5)

Consider the critical term &67'/2|v, _ |1 - on the right hand side of (7.5). We write

86‘1'1/2|v|x”:0|1¢ SS&‘H/Z (l OPT(X—)VIX,,:Oh,T + | OpT(X())V\x”:Oh’T + | OPT(X+)VIX,,:0|1,T) .
<eLHS _(v) + T’ISLHSO(V) + ST’ILHS+(V)

By choosing € = £; > 0 sufficiently small and 7 sufficiently large, we obtain
LHS_(v) + LHSo(v) + LHS +(v) 5 [Py oVllo + Wllir + 7'21@lo.c + 7121y, |1 + 1Davlor.

We conclude by taking 7 sufficiently large, and we obtain the following Carleman estimate in the neighborhood of
the boundary
1/2 1/2 1/2 1/2
T / ||V||1,r +7T / |V|Xn:0|1,‘r +7 / |Dnv\x,l:0|0,‘r < ”Pga,(rv”O,‘r +7T / |(Dn - K)V|<Yn:0|0,‘r'

Then coming back to u = e™™v yields
PPle™ullz + 7' le Dullp: + e uy, |12 + 72Dy, |12 < llePoullz + 7'/%1e™(0y, — 6S oulz.

This concludes the proof of the second part of Theorem 1.5. As the conditions imposed to the weight function
in Section 4.2 are invariant under change of coordinates, we naturally obtain (1.25) in the neighborhood of a point
of the boundary 0Q.

7.2 A local Carleman estimate with a boundary observation

Here, we prove (1.24), that is, an estimation with a boundary observation. this will be used below to prove
Theorem 1.3 in the case a = 0 and b # 0 (see (1.9) and (1.16)). There, b is a non-negative bounded function
satisfying » > C > 0 on an open subset wp of Q2. We then have to observe from the boundary and thus the weight
function is chosen such that d,¢ > 0 in a neighborhood of a point of wp. Hence, it is sufficient to prove a Carleman
estimate where there are no assumptions about the sign of d,¢, yet assuming d,¢ # 0. Observing that Proposition
6.1 is independent of the sign of d,¢, it remains to prove an estimate in the region ¥ := &° U &™.

Proposition 7.1. Let V be an open neighborhood of 0 in RY, and ¢ be a weight function satisfying the conditions
of Section 4.2 in V with in particular |0,¢| > Cy > 0, and y € S(} be such that supp y C F. Then there exists C > 0
and 19 > 0 such that

71 Opr QOVIR ;. + 71D, Opr 0V, ols - < C (1Pl . + NI + (827 + v, B, +71OF).  (7.6)

forall|lo| > 1, T > 1glo| and v € E;O(VJ').

Proof.
We set w := Opy(x)v. Using Proposition 4.3, there exists 7o > 0 such that

2 2 2 2
TR, + TRe BOW) < IIPoowli2, < 1Pl + IV, (7.7)

for 7 > 7y|o|, where the boundary form B reads

B(w) = (ax,,‘PDnWIX,,:o’ an\x,,fo)

=012 Re1) + (A1W|x,,:07 anlx;,:())

LZ(RWI)
+ (an‘mzo’ AIW‘»::O )LZ(R/X—I) + (Azwll(n:o’ W‘Xu:O )LZ(RA—I)'
Observe that, by symbolic calculus, for all N € N,

AjoOpy(x) = Opr(c)) + A} (resp. Ao Opy(x) = Opy(c)) + A7)

with ¢; (resp. ¢) € S;’T, supp(c;) (resp. supp(c’)) C supp(x), A?’ (resp. A;N ) € ¥;Y. Moreover, as [¢'] < 7 in
supp(y) by Lemma 5.2, we have c;, c;. € TJ'S%T. Hence, we have the estimate

1BW)| < [(Dy Opr OOV, 15 + T2V, L6+ (7.8)
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Now we shall use the boundary condition (4.12). With the same arguments as above, we have Op;(y)K € (672 +
T)l//(;-y_r and thus

(D, Opr(xIV)L,,olo.r < [(Opr()Duv),, olo.c + I([Dns Opr()IV)L, L lo.r
S (Opr(NKV)L, olor + I([Dn, Opr 00 IV), olor + ®lor

2
< (0T + DV, olor + 1Blor

This, in addition of (7.7) and (7.8) yields the result. O

We can now conclude the proof of the first part of Theorem 1.5 by patching estimate (7.6) with estimate (6.1),
since no condition on the sign of d,, ¢ is needed in the region &*, and taking 7 sufficiently large to absorb low order
terms. Note that, as opposed to the proof of Section 7.1, there is no need for the introduction of the additional
small parameter &.

8 Interpolation and resolvent estimate

8.1 Interpolation estimate
8.1.1 Observation from the interior

In this section, following the ideas in [20], we shall derive an interpolation inequality from the Carleman estimate
(1.25). We prove the inequality in the interior, and propagate it up to the boundary. Below, we set Q, = {x €
Q, d(x,0Q) > n}and Q7 = {x € Q, d(x,0Q) < n}.

Theorem 8.1. Let w; be an open subset of Q. There exists C > 0 such that
llully, < Ce“ (I1Potllay + 1Dy + 68 ot 2any + lll 2w ) -
foralllo|>1andu e H*(Q) such that Uy, € H*(0Q). We recall that |I.lly, is the norm defined in (1.13).

The proof is splitted in the two following lemmata. First, an interpolation estimate in a neighborhood of the
boundary

Lemma 8.2. Let yy € 0Q.Then, there exist n > 0, a neighborhood V of yy in ﬁ, u € (0,1], and C > 0 such that

l—p iz
C
lllzr vy + Wt vraey < Ce (llliny + ol an)  (1Pettllz) + Bvttyg + 65 cttglen) + i)

for all u € H*(Q) such that uy,, € H*(0Q), for all |o| > 1, and for all § > 0.

Second, an interpolation estimate in the interior, which proof can be found in Appendix D.4. A version without
the parameter o can be found in [20].

Lemma 8.3. Let Q be a connected open set of R" and w; be an open set compactly embedded in Q. Then, for all
n > 0, there exists C > 0, and pu € (0, 1] such that

Cloyp, 114 ”
ez, < Ce“ e, (1Potllizy + lllz2o)

forall u € HX(Q), o] > 1.

Proof of Lemma 8.2 We shall work in normal geodesic coordinates (x', x,) € R™! x R as in Section 4 in a
neighborhood U in Q of yp € dQ. These coordinates are chosen such that yo = 0. We shall still denote U the
corresponding neighborhood of 0 in R’}.. For 5 > 0, we define the following anisotropic distance on R”:

’ ’ 172
dy(x,y) = (I¥' = Y'IP + Bl = yal?) . 3.1)

We choose 9 > 0 such that xo = (0, r9) € U. Then we take W a neighborhood of 0 in R” such that W* := WNR" c
U and such that d(xq, W) > 0. We set ¢ = ¢~ where y/(x) = dp(x, xp). Observe that ¢ is an admissible weight
function on W* for A sufficiently large (see Proposition 4.2) and for g sufficiently large (see Section 4.2). Until the
end of the proof, § is kept fixed. We define the following cut-off functions ¢, x1 € Cy’(R"):

(x) = 0 in x,>n ] (x) = 0 if dp(x, xp) < ry ordg(x, xg) > 15
XY=V 1 in xel0.m/2] 7 A" TU 1 in dg(xxo) € 3. 14l

withO < ry <rpand O < r, < r3 <rg < rssuch that
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{dg(x — x0) = 75}

X
L {dg(x — x0) = 14}
{dg(x — xp) = 13}
W {dg(x — x0) = 12}
X0
1o
o

Figure 4: Geometry of the cut-off functions near (0, 0). The grey zone corresponds to the region where yoy; varies.

e 13 is small enough to have Bg(xo, 73) N W+ = 0, where B denotes the open ball associated with the distance
dlg;

e 1y small enough and ry < ry4 < rs are such that {x € R} | x, < ri} N {rsy < dg(x, x0) < rs} ¢ W*.

The geometry of the supports of the cut-off functions is represented in Figure 4. As d,,¢ > C > 0 on supp xox1,
we can apply the Carleman estimate (1.25) on W* to w = yox u: there exist 7o > 0 such that

3 2 2 3 2 2
T “eTtﬂW” 2(W+) + T”eT‘pDW”LZ(WJr) +7T |eT‘pW‘.rn:0|L2(WO) + T|eT‘pD’W|x,,:0|L2(W0)

S e Powlipagye + TIE™ (@D, = S W, ol Papeys (8:2)
for all T > to|o|, where W0 = W N {x,, = 0}.The right hand side can be estimated as follows

le™ Powllp2qwey < le™ Poull 2wy + 1€ [Po, xox 1 Jull 2w+
c c c
< e Poutll 2wy + e llull i ow et 2 + € Tl vy

with C3 > ™0 and C; = e Y. Observe that C; < Cs. Here, we used that the weight function ¢ is radial
with respect to the distance dg to xo and decreasing as x moves away from xo, and the commutator [P, xox1] is a
differential operator of order 1 supported in the region were yoy; varies (represented in grey in Figure 4).

In the same spirit, using that 6 < 1

c c
[(e™(0x, — 08 W), olzwoy S €30, = 08 o )uy, o lr2woy + ™! (l“lx,,:ole(WO) + |D/“|X,,:0|L2(W0))~

Finally, we can restrict the left hand side of the Carleman estimate to W := B(0, r¢) N {x, > 0} with s > 0 taken
sufficiently small to have yox; = 1 on B(0, r¢) and this yields, for 7 > 1,

3/2 1/2 3/2
PPl xox1ull 2, + 7 le™ Dyoxrull o awy + T lexox iy, |2 @wn o

12 ¢
+ 721 D yox 1y, 2@waisop = € Ul + 1y, ola@wo,—on)s (8-3)
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where C; = infy; ¢. We finally obtain, coming back to the original coordinates, for some > 0,

Ci—C
T(C=C2) (||Pau||L2(Q) +1(8y + 68 gy 1200 + ||M||H1(Q,,))

+ e_T(CZ_C])(

el vy + [0 |1 (vroe) S €
[l g1y + |”\m|Hl(aQ)) , (8.4)

where V is an open neighborhood of yg € 9Q in Q. Note that we have 0 < C; < C, < Cs. Optimizing this
inequality by applying the following lemma, which proof is given in Appendix D.5 concludes the proof.

Lemma 8.4. Let A, B,C > 0 such that A < C. Suppose there exists T,8,y > 0 such that A < B+ e 7C for all
T >7. Then
A < KB'C'™H,

. L L A
with K = max((y/B)# + (B/y)F,(B/y)F7 ') and pu = ﬁ%y

]
We end this section by the proof of the theorem.
Proof of Theorem 8.1
We shall in fact prove the stronger estimate
c
lll iy + I rcony < € (1P otz + 10yt + S ottalan) + i) (8.5)
As 6 < 1, the result follows. Observe that we can assume that u satisfies
I1Poulli2) < llullg@) + 105100
(8.6)
[0y, + S oty 1200) < Nullpi@) + 1011 60)

otherwise (8.5) follows immediatly. From Lemma 8.2 and by a compactness argument, we can find " > 0, " > 0,
C > 0 and g/ > 0 such that

Clol (

-y
leell 1y + o101 002) S € lull g ) + |MI,39|H‘(6Q)) (IPsulli2 o)

+ 10y, + 08 Uyl 1200) + ”MHH'(Q,,))I/» (8.7

forall |o| > 1 and 6 € (0,1] and all 0 < 7 < iy’ (observing that €, increases as 17 decreases). By Lemma 8.3, for
all > 0, there exists C’ > 0 such that

ldlzrca,y < €l (1Pl + iz (8.8)
for all |o| > 1 and ¢ € (0, 1]. Using (8.6) and (8.8), we have

’ 1-u
c
el 1,y + 1Poutll 2y + 10nty g + S Uiy lrzo0) < € ! (||M||H'(Q) + |M|HQ|H'(6§2))

X (||Pau||L2(Q) + |0yt + 68 ctt)olr200) + ||M||L2(w,))ﬂ~ (8.9)
Injecting estimate (8.9) in (8.7), we obtain (8.5). O

8.1.2 Observation from the boundary

We shall prove here the following theorem (which is the counterpart of Theorem 8.1 in the boundary case).

Theorem 8.5. Let wp C 0Q be an open subset of the boundary. Then there exists C > 0 such that
c
llulloy, < Ce“ (I1Potllz@) + 10yt + 65 clig | 1200) + o120

foralllo|>1,ue H*(Q) such that U, € H*(0Q).
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Proof. Observe first that we can assume
I1Pottllr2 @) + 101ty + 68 oty lr200) < Nullvye), (8.10)

otherwise, the estimate is immediate. We use normal geodesic coordinates (x’, x,) in a neighborhood V of a point
Yo € wp such that V C wp. Hence, we consider an open neighborhood W of (0, 0) in R” such that Wn{x, =0} c V,
and we set ¢ = e, where Y(x) = —dg(x, xp), xo = (0,-rg), ro > 0 will be fixed below and dg denotes the
anisotropic distance defined in (8.1). Observe that for A sufficiently large and g sufficiently small, ¢ fulfills the
weight function properties required in Section 4.2 in W N R’{. We now define the following C° cut-off function

1At dg(x, xo) <1y
X0 ‘{ 0 if dg(x,x0) > 1o,

where the 7 are such that ryp < 7 < rpand{x € R", x, > 0,dg(x, x9) <} C W+. We recall that W+ = Wn{x, > 0}
and W° = W N {x, = 0}. We can then apply the Carleman estimate (1.24) to yu in W*, as in the present case
dyp > C > 0. We have

3 2 2 2 5
T ||eT‘pXM|| Z(W*‘) + T||eT‘pVXu||L2(W+) s ||eTwPU'Xu||L2(W+) + Tl(axn - 6SU’)XM|X”:0|L2(WO) + T |eT‘pXu|x,,:0|L2(W0)'
The right hand side can be estimated as follows (using the fact that commutators are supported in regions where y
varies)
2 5 c
1™ POy + 7@, = 88 o, 2w, + Tl x|z < € (1Poullzzne

C
+1(Dx, = S o, ylizwoy + I, o 2wy ) + € (allznwy + lay, ol wy) -

with C3 > ¢(0, rp) and C; = (0, ). We can restrict the left hand side to W, an open subset compactly embedded
in W*Nn{xeR", 0<dg(xpy) < ri}, to obtain

C3—Cy
O (1Pl ey + B, = 68 It ol 2wy + 11012001

—H(C—C
+ e (||M||H'(W+) + |M|X,,:0|H'(a)g))'

where C, = 0. W) Observe that C 1 < Cy < (3. Coming back to the original coordinates in the neighborhood
of y, and optimizing this estimate using Lemma 8.4, we obtain that there exist 1 > u > 0 and C > 0 such that

C 1- H
ull 20y < Ce“ Nullinay + Uil 00) ' ™ (”Po'““LZ(Q) + 1011 + 68 sl lr200) + |u\oﬂ|L2(w5)) ,
where O is an open subset compactly embedded in Q. Then, we apply Theorem 8.1, and we find
lull i) + 0l a1 00) S eqo—‘(”Pau”Lz(Q) + 10y, + 6S sty 1200
’ 1-u iz
c
+ ¢ (Il + ol o) (1Pl + 1Bvttyg + 65 attglo0) + Milrwy) ) (8:11)

This, and assumption (8.10) ends the proof. O

8.2 A resolvent estimate
8.2.1 The boundary static case

We use the notation of Section 2.1. We recall that A; is the operator defined by:

(0 -
As 1= (—Ag a(x))

where a is a function satisfying a > C; > 0 on an open subset w; of Q, of domain

D(As) := {(ug. ur) | ug € H*(Q), uo,, € H Q). ur € V5(dQ), dyug + 6Zug + buy = 0},
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where b is a bounded function satisfying » > Cp > 0 on an open subset wp of Q. In fact, we can allow a or b be
identically zero, that is w; = 0@ of wg = 0. We shall prove the first part of Theorem 1.3. Let U = (ugp, u;) € D(As)
be such that (ioc Id +As)U = F := (fy, f1) € Hs. This gives

ioup —uy = fo, (o +a(x))u; — Agup = fi,
which is equivalent to
u = —fo+ioug, —Agup— uy + ica(X)uy = fi + a(x)fo + io fop. (8.12)

This yields that ug satisfies

{ (=Ag = 0ug + ica(xyug = f in Q (8.13)

Oy + 0Zug + iochb(x)ug = g in 0Q2
where f = fi + a(x)fy +iocfyand g = b fol,e- Observe that in this case, in the definition of S - (see the beginning of
Section 1.3.2), « is equal to 0. We multiply the first equation of (8.13) by ug and integrate over €, and this yields

2 2 2 .
IV a0l ) + 6 (Stto. o)1 o 1o = Mol ) + ier{amo, o),
+ lO'(bMo\aQ, uol”ﬂ)LZ(ﬁQ) = (f, MO)LZ(Q) + (g, u0|ﬁﬂ)L2(ﬁQ). (814)

Taking the imaginary part, we obtain

2 2
Cilol lluoll 2, + Calol 1o l12 50, Slol{auo, uo + ol bty » o),
(wr) (09)

= ’Im (f, uo)

L2(Q) L2(6Q)

(8.15)

+ ’Im (g, MO)Lz(,ag)’ .

L2(Q) ‘

Now we apply Theorems 8.1 and 8.5, (since ioa and ioh are low order terms (see Remark 1.6), the Carleman
estimates of Theorem 1.5 holds with P,; and S replaced by —A, — 0% + ioa and 6% + iob, and Theorems 8.1 and
8.5 applies for ug), and there exists C > 0 such that

Clol (

lluollvy) < Ce 1Az + 18lr200) + luoll2@w,) + |u0|5Q|L2(wB)) (8.16)

for all |of| > 1. Using (8.15) and (8.16), we have for |o| > 1,

(€1 + CollulRy, 5 €9 (11 gy + 1282 50, + [ (7 0)

+ ']m (g’, uOLaQ)LZ((’)Q)') ’

L2(Q) ’

The young inequality yields

= 7 -1 -1,C 7112 =2
’(g» MO“"Q)LZ((')Q)’ + ‘(f7 uO)Lz(Q)‘ Sé&E (CI + CB) e ‘U—l(”f”Lz(Q) + |g| 2(,99))
—Clol| 2 2
+ S(Cl + CB)e (”MO” 2(Q) + |u0|ﬁﬂ|L2((')Q))’
for all 6" > 0. Using the trace theorem |uoj,, |1250) < lloll1, we obtain for & > 0 sufficiently small,

Clo| (

lleellvy) < €™ {1 fllz) + |§|L2(ﬁg)),

for |o| > 1. Using now the definition off and g below (8.12), we have

C| 7 ~2 C|
7 (il + 18200y) < € (IAill2@ + (1 +loDllfoll2@) + foal2o0)
< ¢ o, flly

and this ends the proof of (1.18) in Theorem 1.3.
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8.2.2 The boundary dynamic case

We now treat the dynamic boundary case, i.e we prove a resolvent estimate for the operator

0 -1d 0 0
_|-A a 0 0
Bs=10" 0 o —m|

v 0 T b

defined precisely in Section 1.2. Note that a and b are as above, that is, one of them can be identically zero. We
shall see that everything we did in the previous case can be done, i.e prove and use the same Carleman estimate.
Indeed, let us consider U := (ug, u1, yo,y1) € D(Bs) and F := (fo, f1, &0, &1) € Ks, such that

(ic1d+Bs)U = F

This equality is equivalent to the following system

ui = iO’Mo - f()
—Aun — o2 i - f
JUo — O Ug + ioaug f 8.17)
Y1 = 1W0Yo— &0
Y1(uo) + 6Zyo — 60%yo + iohyy = &,

where f = fi + (ic + a)fy and § = 8g; + (dio + b)go. As above, we can multiply the second line by g, integrate
by parts, use the transmission condition ug,, = yo, and take the imaginary part to obtain

O'(auo, uo) + O'(buowﬂ, Mom) Im (f, uo) +Im (g, Mom)

L2(Q) L2(Q) - L2(Q) 12(6Q)°

It is then sufficient to derive a local Carleman estimate for the solution ug of the following problem

(-Ag—0Pug = f
Ayutg + 6(S — o P)ug = 3,

which corresponds to Theorem 1.5 in the case x = 1. This allows us to repeat what is done above, and obtain
liollv, < e (Il + 18200 (8.18)
Using the definitions of f and g, and the fact that § > 1, we have
120 + e < Mfollm@ + fillzg + 6" (Igolman) + 181l2@) S 1o, fis 0, gDl (8.19)
as go = fol,,. From (8.17), we obtain
oz ) + N llzzqy + 82 (Dol any + 1l

2
< (U +loluollin oy + Ifollzz + 6" (1 + loDlttoalman) + 180l200)

1/2
< (1 + loDlluolly, + lfollzz) + 6'7180l200)-

This, associated with (8.18) and (8.19) ends the proof of Theorem 1.3. O

A Heuristic derivation of the model

In this section, we derive the Ventcel boundary conditions from a transmission problem in an open subset of
R". Transmission conditions occurs at the interface of a thin layer that surrounds the boundary dQ2. The Ventcel
boundary condition arises after some approximation. For the sake of simplicity, we consider the case 2 = R’} with
boundary dQ = {x, = 0}. We set Q% = {x € R" | x, € (=6, 0)}, where § > 0, that describe a layer at the boundary
0Q. We also set 9Q° = {x, = —5}. We then consider the following elliptic problem

(=05, = ADuy = fionQ,  (=0y,¢0,, — ADus = fron Q°, (A1)
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where c is a smooth function on Q°, with homogeneous Neumann boundary condition at {x, = —5} and transmis-
sion condition at {x, = 0}

— — _ ’
Oz, =0, uy, o =u, o Oy, =c(x',0)0yu, . (A2)

Multiplying the second equation of (A.1) by %, and integrating with respect to the variable x, from -6 to 0 we

obtain
1

1 10
—g(cax”uz)‘m:o_ -3 f Afurdx, = 5 f frdx = g. (A.3)
-0 =

. .. - . 0 . . . .
Using the transmission condition and setting v = % f_ P uydxy, that is averaging u, over Q9 in the x,-direction, (A.3)
reads |
T
_56-’%”1')‘;,:0 —-Av=g.
If we make the approximation v ~ uy, _, which is meaningfull for 6 > 0 small as uy, . = uy, - (we identify the
function u, and its average on a small domain), we obtain the following transmission condition at {x, = 0%}

1
4 —
_gaxnullxnzm - Agu”xn:o* =8

The transmission condition at the interface for (A.1) thus yields a Ventcel-type boundary condition for u; if we
consider the problem from the side of Q. The approximation v ~ u|__,. is only reasonable for a small value of 6.
The Ventcel boundary condition can be seen as a good model for a thin layer structure at the boundary.

B Well-posedness results

B.1 Proof of Proposition 2.1.

We first prove that the operator is coercive. For A € R, the equation (A5 + AU = F, with U = (u,v) € D(As) and
F = (f,g) € Hs, reads

Au—f

" (B.1)

v
{ Pu+ (a + D)Au

where h = g + (a + A)f, with boundary conditions
Oyu + 6Su + Abu = h on OQ

where i = bfj,,. We recall that P and S are defined in (1.20). Taking the Z?-inner product of the left hand side of
the second line of (B.1) with some ii € Vs, we obtain

(P + 2@+ i) ,
= (- A, a)LZ(Q) +(Aa + Du, )
= (Veu. V)
+(chu, ﬁ)

+ (chu, ﬁ)LZ(Q) + (du, ﬁ)LZ(Q)
+ (Aa + Du, )

L2(Q)
rQ (01t Ml‘m)LZ(BQ) 2@
+ (du, ]
Q) JE9)
— ~ ~ TyT ~ i
- (Vgu’ Vgu)Lz(Q) +6 <2”\0ﬂ’ ”\0Q>H*1(6Q),H1(BQ) + 5(6 Vg Ujye» ”\m)Lz(aQ) - (h7 ”lag)szQ)
+6(d7um, ﬁ‘aﬂ)y(r’)g) + (/l(a + u, 17) + (chu, 12) du, )2y + (/lbum,

= as(u, i) - (i;l’ ﬁl(m)

2(Q) ra T ( fig )Lz(aﬂ)
L1209
This leads to the following variational problem, for all ¢ € Vs:
as(u, @) = l(g), (B.2)

where l(¢) = fg ho+ faﬂ 7up|m. Let us prove the coercivity of as for A large. Recalling that |.|%, ’ 6Q)+<2" DHA0Q).H (650)
provides an norm equivalent to |.|51(5q), by the Young inequality, there exists Cp > O such that

TwoT T
’(cvg”’ M)LZ(Q) +0{c" Vit ”'59)Ll<ag> + (du, ”)Lm) + 0{d" ”'59)L2<ag>’
2 2 -2 2 T 2
< lells (2 1V gl ) + &2 1ull- ) + SCole |1 (€ (Ztts 0) 1150, 111000

-2 2 2 T 2
& 2 g 2 e ) + Ml il g + 1" 1l 72 -
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for all € > 0, and for all u € V5. In particular, we choose ¢ sufficiently small such that
2 1 21T 1
1-&cllp~ = 3 and 1-Coe’lc’ |~ > 3 (B.3)

and we keep the value of ¢ fixed in what follows. We shall need the following trace lemma.

Lemma B.1. For all u € H' (Q) we have

1
2 2 72 2
|Lt| 2(6Q) < ;”MH 2(Q) +é& ||VgM||L2(Q),

forall ¢ € (0,1].

Proof. By locally straightening the boundary, it is sufficient to prove the inequality in the case where Q = R}
and 0Q2 = R”. We then have for v € C;(Rﬁ),

+00 +00
u(x’, x,)% = —f ax”(u(x’,xn)z) dx, = —2f uly, u dx,.
0 0

Applying the Young inequality yields the result. O
For ¢ fixed by (B.3), we can now apply Lemma B.1 to have

1
-2, T T 2 -2,.T T 2 2 2
(Cog™"le" 1= +1d" [)lul2 50, < (Cog™"le 1 + 1d" |1 )€V gull > ) + o2 12 )-

for all & > 0. In particular, we can take & such that § — & (CoszlchLm + IdTILeo) > 1. Hence, there exists C; > 0
such that
2 2 2 T T
as(u, u) 2||Vull o (1 = &7llcllzs — 68" (Cog™"Ic" | + |d" |1))
2 2 ) ) T T
+ lully2 ) (A7 = Nl — &7 = 68" (Cog™ " |c" |~ + |d" |1~))
20T
+6 <Zu|(m’ u\aﬂ)H"(ﬁQ),H'(ﬁQ) (] = Cogllc" |Ir=)

1 2 g 2 2
ZZ”VXMHLZ(Q) + E <Zu\ag» M|69>H"((')Q),H|([)Q) + [lul| z(Q)(/l -Cy).

Therefore, taking A sufficiently large yield the coercivity of the bilinear form as, uniformly in 6. Let us prove that
[ is continuous. We have

(@) < |f(g +(a+ D))l + |f DfisaPraal < (||f||L2(Q) + llgll 2 + |b|L‘”(ﬁQ)”f||H'(Q)) [l
Q 4Q

We can then apply the Lax-Milgram theorem to obtain existence and uniqueness of a weak solution u € Vs of
the variational formulation (B.2), and we have the bound

llully, < 11fllzz) + 1gllz + bl flla@)- (B.4)

In fact, H? regularity holds in the interior (see [4]) by standard elliptic theory. It now suffices to prove that for
any xp € 0Q there exists a neighborhood V of xy in Q and 6 € C*(Q) with supp8 C V such that 6u € D(Ajs). In
addition, we can impose 8,6,,, = 0. We set w = Qu. From (B.2), w satisfy for all ¢ € Vs(Q N V):

as(w, ) = f he + f h. (B.5)

onv NV
where t1 1= 0h — V,0 - Vou — divg(uVe0) + cV,6u € L QNV), and 1, := Hbﬂfz + 0[S, O,0]up,, € L2(0Q N V).
We choose V as in Section 4 and use the local normal geodesic coordinates x = (xi, ..., x,) described therein. In

this coordinates Q2 = {x, = 0} and Q = R}. We set V0 = V N {x, = 0}. Below, we shall denote V(V) := {u €
H\(V), u, , € H'(V%)}. With 6 as above, (B.5) reads

fAVW.V{//+6f AV, VT, =ffl¢/+5f b, Y e V), (B.6)
\%4 Vo |4 Vo
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where K, K, k, k' # 0 are bounded functions, and, because of the form of 7, 7, can be written
b = 21 + 62 with [z1]290) < 1blws@allfllm @), and zo € SL*(Q). (B.7)

where A(x) (resp. A’(x)) is the matrix corresponding to the metric g (resp. gj,,) satisfying the following ellipticity
condition: AC > 0 independent of x, V& € R" (resp. R""!), we have

1 < CAEE  (resplé’|? < CA’E £,

where we denoted & = (£/,&,). Let ¢, be an element of the cannonical basis of R”, k # n, and set & = |h|e;, and
Dyu(x) = ﬁ(u(x + h) — u(x)), and |h| sufficiently small so that supp(w(- + h)) c V. We choose ¥ = D_,Dyw in
(B.5). We obtain

f Dy(AVW) - Di(Vw) + 6 f Dy(A'V W ,) - DRV W, = f fiD_yDpw + f HD_pDywy .- (B.8)
\%4 V(] Vv VO

We shall need the following estimation:
1DVl < VYVl (B.9)

A proof can be found in [4, Lemma IX.6]. Using (B.9), the right hand side of (B.8) reads
fle—hDhW <Nl IVDawlli2cvy < Nl 2on IDawllen vy,
v

and with (B.7) and trace formula
f HD-_nDyw < |21l 12vy) [D-nDiwy o lg-120v) + S22l 2(vo) | D-nDaw) 112 (vy)
Vo

< [blwr=@oy 1l @I Dl vy + 618212 w0y Dawy o L (vo).-
Observe that we have the following Leibniz rule
Dy(BV{) = B(- + h)D;V{ + (D B)V{,
for all matrices B and functions £. Then, (B.8) yields
as(Dpw, Dpw) < (”fl”Lz(V) + 6"l 2y + |b|W'»°°((’)Q)||f||H'(Q)) I1Dpwlly,,

where d; is the bilinear form defined by
as(u,v) = f A(x+h)Vu-Vvdx+6 f A'(x+m)VTu, -V, dx'.
U Vo
Observe that d, is coercive with the same argumentation used to prove that as is coercive. Then, we can derive the

inequality , -
1Dl ) + SRV WIL o) S TIIDpwlly,-

H\(V) L2(U°
with T = |If1|l2v) + 122l2 vy + Plwi=@oll fllm1 > and then
DIy vy + 821DV W20y < T. (B.10)
Now, for ¢ € C(V), U e Cy(Vo), and forall j € {1,...,n},l €{1,...,n— 1}, we have from (B.10)
|fWth6x/l//| = |th6x/Wl//| < Tl (B.11)
v v
| f WD = f Dy 91 S 6 T, (B.12)
1% 1%
Taking the limit & — 0, we obtain w; , € H*(Vy) and (ﬁmw e L’ (V),andVje{l,...,n},kefl,...,n—1}.

It remains to show that 6§”w € L*(V). As we are working with normal geodesic coordinates, the coefficient A
of the n-th raw and n-th column is a,, = 1. Then (B.6) reads, for y € C5’(V),

f Oy, WO W = f iy — f a0, W .
v v k)2 YV

and with (B.11), this yields vaénwant]/I < CT||¢|l,2. Moreover, T < [Blwrs@allflla + 1l + 1gllz @), since
we have (B.4), we have proved [lul, o, + Slugel2n ) < Blwn=aallf 1 q + I/l + 81, Using (B.1), we

obtain the sought result. O
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B.2 Proof of Proposition 2.5

The proof is essentially the same as in Section B.1. Here, we only prove the existence and uniqueness of the
announced variationnal problem in K. The elliptic regularity can then be proved in the same way as in section
in B.1 by the Nirenberg translation method. Let U = (uo, u1,y0,y1) € D(Bs) and F = (fy, f1,80,81) € Ks. Then
(Bs + A1d) U = F reads

—M]+/ll/t0 =f0 I/l1=/1u0—ﬁ)
Pug + (a + Du, =f1 Puy + A(a + Dug = hy
—
=y1 + Yo = &o Y1 =2y — &o
LBy, + Syo + (b + Dy1 = g1 Oyt + 08y + A(b + 6)yo = hy,

where hgy := fi + (a + D) fy and hy := 6g1 + (b + 6A)go. Thus, it is sufficient to prove the existence and uniqueness
of a solution (u,y) € H'(Q) x H'(4Q) such that u,, = y of the following system

{ Pu+ A(a+ Du = hy (B.13)

Oyt + 6Sy + AL + 6 )y = hy.
Taking the inner product of the first equation with # yields, with integration by parts,

(P+a@+)ui),

=( - A, a)LZ(Q) +(eVan, ﬁ)Lﬁ(Q) + (du Z‘)ﬁ(ﬂ) +A((@+ u, ﬁ)wﬂ)
=(Vg”7 Vgﬁ)LZ(Q) + (/l(a + D, ﬁ)LZ(Q) + (chu, ﬁ)LZ(Q) * (du, ﬂ)LZ(Q)
+ 0 (Zyyg, Bag ) -1 000 111 02) + M((b + Dt f"aﬂ) + 6(CTV§ o> ﬁ‘aﬂ)

+ 6(dT“|an g ﬁlaﬂ)

12(0Q) 12(0Q)

o) (hl’ ﬁ‘ﬂﬂ)Ll(aQ)

:=b§(u, ft) — (/’l] . ﬁ‘f"ﬂ)[}(,ag)'

This leads to the variationnal problem

bs(u, @) = l(g),
where I() = ey how + fqghl‘p‘aﬂ' Note t.hat <2MT U -1 o 96 + Iuliz(ag) provides an equivalent norm to |.”|i11(ag)'
We now claim that the bilinear form b is coercive. Indeed, observe that as a and b are non-negative functions, we
have (au, u);2q) = 0 and (buy,,, u),,) 1290y = 0. We can now apply the Young inequality to obtain

ToT 2 2 -2 2
’(Cvgu’ M)Lz(g) + 6(6 Vg Ulye» ul’m)LZ([)Q)’ < llellz (3 (IVgull 2@Q) te ”M”Lz(g))
+01c" |1 (E2CIVE 012 5 + & 2 talia)) - (BL14)

for all & > 0. Taking & sufficiently small to have 1 — ||c||;~¢’ > 1 and 1 — ClcT|=6" > 1

3 > 5, and now taking A
sufficiently large, we prove the coercivity of the bilinear form bs. It remains to prove that the linear form [ is
continuous on Vs. We have Ithoth < Aol 2 llellz2) and because of the form of 4y, we have |LQh190\m| <

lgol 2@ llell @) + 0lg1l2@)leliz@q)- These two estimates yields the continuity of /.

O
C Unique continuation property from the boundary
Theorem C.1. Let u € H*(Q) be such that
[Pu(x)| < lu(x)| + [Vou(x)| a.e on Q, and d,uy,, + Su),, =0 on Q. (C.1)

Assume moreover that uy,, = 0 on an open subset wg of 0Q. Then u = 0 on Q.

Proof. We use the normal normal geodesic coordinates introduced in Section 4 in a neighborhood of yy € wp.
In these coordinates, yp = 0 and 0Q = {x, = 0}. Consider U an open neighborhood of 0 in R" such that U N {x, =
0} C wp. Let xo = (x' = 0,—ry), with ry > 0 to be chosen below. Let ¥(x) = |xo — x>, and define @(x) = e~ V™,
Let r; > 0 and r» > 0 be such that
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i {x: (x/’xl‘l)lxl‘l >O’|x0_x| < r2} - U+’
e ro<r <nr,

where U* := U N RY}. Observe that for 1 > 0 chosen sufficiently large, ¢ satisfies the sub-ellipticity condition
(4.14). Define the cut-off function y € C7(R"):

Y@ =1 if|lxg—xl <n
xx) =0 if|xg— x| > .

From Proposition 4.3, there exists 79 > 0 such that for 7 > 7y

3 2 2 2
T lle™xull +7lle™ Dxull >y S €™ Pxeullpz e

2(U+)

2 3
+ T|eT“"6anu"m:0|Lz(U0) +7le™xuy,, (C.2)

‘0|L2(U )7

for all u € C0 (U*), where Vy := VN {x, = 0}. Note that |ew)(u|m_0|y Uo) = 0as U C wp. Observing that
Pyu = yPu + [P, y]u and Dyu = yDu + [D, y]u, with assumption (C.1), estimate (C.2) reads

3 2 2 2
T ||eT¢XM||L2(V+) + T”eTSDXDu”LZ(V-t-) $ ||eT¢XM|| + ||eT¢XDu||L2(V+ + ||eT¢[PX]M||L”(V+

2
+ TIeT“"[D,X]ulle(w) + Tlewax,/\/u‘m:olwvo).

Taking 7 sufficiently large, we may ignore the first two terms on the right hand side. Now, observing that the
commutators [P, y] and [D, y] are supported in the region where y varies, we obtain

2 C 2
“eTw[P7X]u“L2(V+ + ”eT‘p[D X]ul|L7(V+ < eT ]“u"Hl(V*)’
with C; = e~ Furthermore, note that
2 2
|e“"((9x,,\(u)‘m:0|mv) = |€ [ x,,7X]\x,l:0u\x,l:o|L2(V0) + |eT¢X|xn:oSu\x,l:olLZ(vo) = O’

by assumption. We then can restrict the left hand side of (C.2) to W := {x =X, x) | x>0, |x0— x| < ri}, where
r} is such that 7| < r; and such that W # 0. This finally yields

Nl ey S €l s (€3)
with C; = e™1. As C; < C3, letting T —> +o0 in (C.3) yields u = 0 in W. Coming back to original coordinates,

we have found a non-empty open subset O C Q such that u;, = 0. We can conclude by applying Calderén’s unique
continuation theorem for elliptic operators of order two. O

C.1 Proof of Proposition 2.8

Below, we shall denote by H and V the spaces V-1 and Hs—;. We recall that Vs and V (resp. Hs and H) are
homeomorphic for each §. However, only the injection Vs < V (resp. Hs < H) is continuous uniformly in §. In
particular, V5§ and YV’ are homeomorphic and only the injection V’ < V% is continuous uniformly in 6. Observe
that f; — f in L*(0, T; L*()) implies || f3ll;2¢0,7:12(q) < C uniformly in 6. Consider first U) € D(As). Multiplying
(2.4) by 0,us and integrating by parts over Q yields

d T 2 2 2
— (10132 ) + Waslys ) + 01 g toaloony) + | aldusl® + | blowus,al* = | fous.
Q oQ Q
Integrate in time between 0 and ¢, and using Proposition 2.2,
2 T 2 1/2 2
”6[!/[5(0” 2(Q) + “I/lé(t)“[_]l(g) + 5|Vg u(ﬂgﬂ(ﬂ' 2(6Q) + |a / |atu6|L2(O,T;L2(Q))

T
1/2 2 0112 2
+ |b / 6tu§|ﬁQ|L2(0’T;L2([)Q)) S ||U§||(]-( + jo‘ ||f6||L2(Q) S C7 (C4)
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from the assumptions on f5 (constants may change from one line to an other). Now, consider w € L*(0,T,V).
Multiplying (2.4) with Ug € D(As) by w and integrating by parts over (0, T') X Q yields the following variational
formulation

T T T
jo‘ (6,2145, W)Lz(g) + j(; (Vgu(;, ng)Lz(Q) + 6](; (Vguém, ngm)Lz(m)

T T T
+j(; (aa,ug,w)Lz(Q)+jo‘ (bﬁ;umm,wm)wm):jo‘ (J%’W)Lz(é)ﬂ)' (C5)

With (C.4), we have

T T
2 1/2 1/2
[ @) s [ (i, 1l + a0, + 16Ot ol
0 0
0
< (WUl + 1 fsllzo,m2c) Wiy

Note that by a density argument that this estimate is still valid for Ug € H. We thus obtain for Ug € H, that
IEEN fOT(a,zué, W)z € V'’ and thus 8?us € L*(0, T;V”). Hence,

2012 2 2 T 2 1/2 1/2
||a[ M6||L2(0,T;(V’) + ||6;M§||L2(Q) + ||u§||HI(Q) + 6|Vg u§|,ag|L2((')Q) + ”a / atu§||L2(Q) + |b / at”ﬂ,agl < C
This allows to consider a subsequence us, and a function « such that

us, — uin L*(0, T; H'(Q)), us, — uin H' (0, T; L*(Q)),
us, = win H*0,T;V"), b us,,y, — b"?du,, in L*0, T; L2(0Q).

We also can extract a subsequence to us,, denoted again by us, such that ¢ ,](/ zvgu@ is weakly convergentin L*(9Q).
In particular, we have [V} us|;2(q) = O(6™"/?). Taking the limit in (C.5), we thus have

T T T T
jo‘ <a’2u’w>(vaq/+j(; (Vgu, ng)Lz(Q)+£ (aa,u,w)Lz(Q)+£ (ba,u‘ag,wm)wm)
T
= fo (£ ) (€6

yielding | fOT (6?14, w>qﬂ 3| S Wl ), forall w € V. As Vs dense in H'(Q) we obtain that 9>u can be extended

as a linear form defined on H'(Q2). We obtain the variational formulation associated with the problem (2.5). We
can deduce by existence and uniqueness of the solution of (C.6) that the limit does not depend on the chosen
subsequence. This ends the proof. O

D Proof of technical results

D.1 Proof of Proposition 4.2

Observe that the parameter o~ does not appear in the Poisson bracket {p,, p1}. We set S(x) = At¢(x) and { = ﬂ’lf.
After computations of the Poisson bracket, we obtain

{p2, P, E,7) = B OAR + Ra),
where Ry = 4p(x, dup(x))* + (040, p(x, £))* and
RZ = zafp(xv _{)axﬁ(-& _{9 dxlp(x)) + dilp(x)(a{:p(x’ ()» 6£P(x» g)) - 6xp(x» g)afp(x» dxlp(x))
+ 0, p(x, d @ (x)dep(x, deh(x)) + AW (X)Bep(x, dr(x)), Bep(x, dp(x))).  (D.1)
On the one hand, as d,y # 0, there exists Cp > 0 such that R; > Cy, and, on the other hand, we observe that

Pocl(x,£,7) = 0, in particular py(x, £, 7, ) = 0, implies p(x, £) = o2+ p(x, Td,), which yields 1+g—§ <P < 1+;—§.
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Hence, there exists a constant C; > 0 such that |R,| < C; (1 + ;—f) Now we choose 4, to be kept fixed in what

follows, such that ACy — 2C; > 1, and if 7 is such that |,%| < 1, we obtain

AR + R, > ACy —2C; > 1 (D.2)
and thus p,, = 0 = {p2, p1} > 0. In particular, it holds on the compact set {p,, = 0} N {4, = 1}. We then
conclude by homogeneity. Note that the condition 7 > ¢|o| with & > m implies % <1 O

D.2 Proof of Proposition 4.3

‘We have

sz, P]V)

2 _ 2 2 .
1Peran, = NP, + 1P, + ((Prv, Pv) )

PR (

Using the forms of P and P, in (4.2) and (4.3) we obtain by integration by parts

i((Plv, P2v) e, = (P2, Plv)Lz(RD) = Re (iP5, P1]v.v)

+Re (P1 VI, 0 DnV\x,l:o)

L2(R])

+Re ((D,Py = 200y, @)Pa)V,, 0V, .0)

L2(R*-1) L2(R"-1) :

Using (4.2) and (4.4), the operator D, P — 27(dy,¢) P, reads

D, Py — 27(0,,)P2 = 2F(x,7dyv @, D')D,
— 270, (r(x. D) = p(x,7dyp) — 0?)  mod T(D"D, + D).

Hence
i ((P1 v, sz)mm) — (P, P, V)L2<Rg>) = Re (i[P2. P1]v, V)LZ(RZ) +7Re B(v), (D.3)
where
Re BV) = 2(0s, DV, Dl ) o g, + 27 A, DWW o Davi )

+ 27, e DDV 0 V1) s gy~ 2058 (06 D) = plrtdp) = 02 ) v, 0v,0)

+ ((éoDn + C1)V|M:O, V|M:O)

12 (R"_I )

+ (Covw.r,,:m Dﬂle,,:o) (D.4)

L2(R1) L2(R1) ’

with symbols Cp, Cy € Z)%T =D%and C) € Z)IT,T. Now, we treat the commutator term in (D.3). Its principal symbol
is {p2, p1}, a polynomial function of degree 3 in (¢, 7), and from (4.7), we know that p; reads p;(x, &, 7) = 7q1(x, &),
where ¢g; is a polynomial of order one in £. Thus, the Poisson bracket reads

(P2, p1} = TE3bo(x, €, 1) + TEub1 (4, €, 7) + Tha(x, €, 7), (D.5)

where b; is a polynomial function of order j in (¢, 7), j = 0, 1,2. As we imposed d,,¢ > C’ > 0, using (4.6) and
(4.7), we have

E = pr(n,E1,0) + 07 = r(6,E) + 720, 9% + r(x, 7d 9), (D.6)

1
&= 90((27)—Um()c,f,r)—f(x, deg,&)). (D.7)

With (D.6) and (D.7), the bracket (D.5) reads

{p2’ pl} = Tbo(x)p2(x’ 67 T, O’) + bl(x7 é‘:,’ T)Pl(x, 67 T) + Tb2(x7 §,7T’ 0—)7 (DS)

where b; are polynomial functions of degree j in (¢, 7), j = 0, 1, and b, is a polynomial function of degree 2 in
(&¢,1,0). We can then write

i[P2, P1] = TboP> + Op(b1)Py + T Op(c)) + 7 Opy(b2),
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where Op(c}) € D!. This yields

1P VIgey = IP2VIGa ey, + IPVIGa ey, + Re (7 Opr(bo)v.v) o+ TRe B(Y)
+Re( (thoP, + Opy(b1)P1 +TOp(c)) v, v)Lz(R”). (D.9)
From (D.8) and the sub-ellipticity property, we observe
P 1,0) = pi(nED =0 = th(x,.1,0) 2 4 2 A (D.10)
We define the following quantity
pxg DY
Y(X’ é':,? T, O') = (#) + (ax,,¢)2ﬁ2(x’ é':,v T, 0—)7 OPT(V) € Z)%",T’ (Dl 1)

where p, and p; are defined in (4.10) and (4.11). Observing that p;(x, £, 7) = Ois equivalentto &, = —(0y, 90)’1 (x, &, dy o),

we obtain, for x € V, EeR" ol =21, 7 > 190,

{ y(x, &, 1,0)=0

— — 4 3
b=~y Hrbidop) T POETO=POED =0= (08102 A

and finally forx € V, & e R*! | o > 1, T > 10|07,
Y(x, &, 1,0) =0 = hy(x,&,7,0) 2 A7 (D.12)

as both sides of the implication do not involve the variable &,. Moreover, if y = 0, taking 7 sufficiently large with
respect to |o| > 1, we have 72 < |¢/*> < 72 and (D.12) yields

Y(x,€,1,0) =0 = by(x,£,7,0) 2 A . (D.13)
We may now state the following positivity result:

Lemma D.1. There exists mg > 0, 79 > 0 and C > 0 such that
mApy(x, &, 7,00 + ba(x, €, 7,0) = CA7.,

forall (x,&) € V' x R ol > 1, T > Tolo| and m > my,.

The proof is given in Appendix D.3. We can apply the Garding inequality in the tangential directions to obtain,
for m = myg to remain fixed in what follows,

mRe (Op; (4727, v) +Re (Op(b2)v.v) 2 VR (D.14)

LZ(R”’]) LZ(R”’])

Then, by symbolic calculus
Op7(475y*) = Opr(175y) Opr(y) mod ¥,

and thus there exist ¢y € S(%T and ¢, € SITT such that

(mOpr (4727, V)LZ(RH) = (Opy (¥, OpT(co)v)Lz(RH) +(Opr(c)v, v)LZ(RH). (D.15)

In terms of the symbols p, and p;, from (D.11), y reads

y(x, &, 1,0) pr(x,€,7) )2

(05, 9)* Po(x, &, 1, 0) + ( 5
=

-1 2
(ax,ﬁp)z (pZ(x7 f» T 0-) - fﬁ) + (%Pl(x» 57 T) - é:nax,l‘;p)

-1
(00,0’ P2(x,£,7,0) + T ' pi(x,£,7) (%pl (X, &7) - fnax,lso)

(05,0 P2(%,E,7,0) + 7 (x, O)p1(x, &, 7),
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1
where r((x, &) = 3 (F(x, &, dyg) — £,0,,¢) € SL. We then have

Opy(y) = 7' Op(r))Py + (0,,¢)* P2 + By, (D.16)

with By € Z)}. Going back to (D.14), and using (D.15) and (D.16), and integrating in the x,-variable between 0
and +oo

Re (((@4,9)*P2 + 7' Op(r)P1 + B1)) v, Opy(co)v)

+ Re ( Opy(c1)v, v)

L2(RY)

+Re (Opy(ba)v.v) )RIIOpT(/l;-yT)vlliz(RD. (D.17)

L2(RY) LR

Thus, (D.9) reads
||Ptp,()’v||i2(R$) > CT” OpT(/l;"’T)v”LZ(R’i) + ||P2v||i2(R$) + ||P]v||i2(R$) +7Re @(V)

+Re ((thoP2 + Op(b1)Py + T Op(c))) v, V)Lz(Rn) —Re (7( Opy(c1)v.v)

L2(RY)
+ ((v(0s,0)*P2 + Op(r1)Py + 7By ) v, OpT(Co)v)LZ(R”)). (D.18)
Yet, using the definition of r; and integrating by parts with respect to x,,
2Re(Op(r)P1v. Opy(coy) , ., = Re (Fx.dvg. DVP1. Opricolv) , .
—Re(Pyv, Dydy ¢ OpT(Co)V)LZ(Ri) +1Im (Pyv, . 0,0 OpT(Co)v‘m:O)LZ(R’H). (D.19)

We set B(v) = B(v) + %T’l Im (Plv‘m:o, Oy, OPT(CO)V\X,,:())LZ ®-1)’ and this is precisely the boundary quadratic form

stated in the proposition. The end of the proof is devoted to the handling of the remainder terms. Using the Young
inequality, we obtain

1 7
| Re (hoPav + Opy(b1)Pv, V)Lz(Rn) — Re (7(0,,9)*Pyv + 5706 D' deg)Piv + 7By, OpT(Co)V)LZ(Rn)

1 ’
+ 5 Re (P] v, Dnax”‘p OpT(CO)v)LZ(R;’) +7Re ( (Op(cl) - OpT(C] )) v, v)LZ(R’fr)’

<7 (P oy + P I aery) + 777 (10D A VI gy + 1DV ) - (D-20)
Injecting this estimate in (D.18), and taking 7 sufficiently large, we obtain
1Py Vlagny = C (T OPL (A VI 2 g + 1P agan,) + TRe B) = 2D -
-1 ~ ’
T x,E1)  FHx,&,dy L.
Moreover, we have &, = P& T) - (&, dr "0), and this yields
205, Ox, 9
DMy S T NPy + 71 OPF (A7 VI
which gives, for 7 sufficiently large, the sought result
1P 2z = C (T OB (Ar e IVIEa gy, + TIDAIGazy)) + 7R BO).
m]

D.3 Proof of Lemma D.1

We set A,y (x, &, 7,0) = m/l},zTyz(x, &, 1,0)+ by(x, &, 1,0) with m > 1. Observe that A,, is homogeneous of order
two in the variable (£, 7, o). We may restrict our analysis to the compact set L = V x K where K := {((¢,7,0) €
R*! x R* x R™, [(¢',7,0) = 1}. On L, we have 72 > 0, and from (D.13), having y = 0 implies b, > C > 0.
Observe that A, is of the form mf(y) + g(y), with y laying in L, and f and g continuous on L. In addition, f(y) =0
implies g(y) > 0. Now consider the compact set E := {y € L, f(y) = 0}. By a continuity argument there exists an
open neighborhood F of E such that infr g > 0. Then on L \ F we have

mf(y)+g(y) = minf f +infg >0

by choosing m sufficiently large. This yields A,, > C > 0 on L. We then conclude by homogeneity.
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D.4 Proof of Lemma 8.3

By a compactness argument, it suffices to prove the estimate with ||u||z1(p(y,.r,) in the left hand side, for any x, and
ro > 0 such that B(xo, r9) € Q, where B(x, r9) denotes the open ball centered at xy with radius ry.
First, remark that we can assume that u satisfies

1Pottllr2 ) < el (D.21)
otherwise the result is clear. As Q is connected, we can choose yy € w; and find a continuous path I' such that

I'0) =xp andI'(1) = yp.
1
Define r := 3 min(r(, r2) where r; := d(0Q,T") and r, := d(yo, dw;). Now we can define a sequence (¢;); by

to =0 and tiy1 = inij, ] >0,

where E; = {t > t; | I'(t) ¢ B(I'(¢;),r)}. This sequence is finite by compactness, and then we can define J :=
min{j € N, E; = 0} and ¢; = 1. Then we consider (xj)j such that x/ = I'(zj). Let us assume for a moment that we
have the following inequality for some y > 0 and C > 0

- 1 ;
lleellp iy S ec‘(rl||u||Hll(lg) (||Pau||L2(Q) + ||M||H1(B(xf+‘,r))) 0<j<J-1 (D.22)

This, with (D.21) yields

C 1- M .
IPoullzzqy + lallcacory < €7l i, (IPotllizg) + ldllmacon ) > 0<j<J -1,

and by induction we have, for some ¢/ > 0 and C’ > 0

’

C 1-u’ M .
IPoull 2 + letlli sy S €€ Ml Ee (IPsullzq) + Wl seyry) » 0<j<J-1.
H'(Q)
As P is elliptic we have the estimate

llellzr Byo.ry S NWPUllr2w)y + Nl 2wy < N1Pottllrz) + (1 + o)lull 2w,

and this gives the result. Let us now prove (D.22). We recall that we have the following Carleman estimate away
from the boundary (see for instance [13]). Let V be an open bounded subset of R", and ¢ be a weight function
satisfying the sub-ellipticity condition in V. Then, we have

3 2 2
T lle™ull}> ., + Tlle™ Dull}s ) < lle™ Poullrzw), (D.23)

W) W)

for all u € C7(V) and 7 sufficiently large with respect to o~. We shall prove here the following inequality

C| 1- o
Tl ey, (1Pl + illicao )

el g i zr S €
Let us set ¢ = e~ with y(x) = |x — x/|> and V = B(x/,4r) \ B(x/, r/10). Define the cut-off function:

(x) = 0 if |x—x/|<r/dor|x—x/|>15r/4
A= 1 if 3r/4 < |x - x/| < 13r/4.

Observe that the weight function ¢ satisfies the sub-ellipticity condition in V for A sufficiently large. We can thus
apply (D.23) to yu and this yields

Tl xullyay, + Tlle™ Dxull}y, < e Poxull ). (D.24)
On the right hand side of (D.24), we have

lle™ Poyulli2yy < le™xPoullzg) + le™ [Py, x1ull2

c C
< & (IPoullzqy + lulli ot ) + € Nl
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where C3 = e~V/* and C; = ¢~1¥/*. Here, we used that [P, x| is an differential operator of order 1, supported in
the region where y varies, and that ¢ decreases as |x — x/| increases. We can restrict the left hand side of (D.24) to
B(x/,3r)\ B(x/,r) =: V, where y = 1. This yields

C‘7
lle™xull 2 + lle™ Dxulli2epy 2 e 2 Mull iy
where C, = ¢(3r). Hence
lull g g 3y S Nl gy + ||M||H'(\7)
C3-C, -7(G,-C
< €O (IPullzi + s ry) + €l . (D.25)

Observe that C; < Cy < C3. It remain to apply Lemma 8.4 to conclude the proof. O

D.5 Proof of Lemma 8.4

First observe that C = 0 implies A = 0, and B = 0 also implies A = 0 by letting 7 — +oc0. We set f(1) =

il
e#"B+e777C for all T € R. This function reach its minimum at 7; satisfying e = (;—g)ﬁ . First assume that 7 > 7.

Then

B d B =y
B+ B+ B+ B+
A< B+eC < (Z) o= +(Z) " BRCl A < (Z) ' +(Z) | B .
B B B B

Second, assume that 7; < 7. We then have ye™"C < 857 B. Hence,
I;L
Y N
A<C<CHCH < (E) ¢ BF CP
Y

which gives the result.
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